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1.1	Algorithms

1.1-1

Give	a	real-world	example	that	requires	sorting	or	a	real-world	example	that	requires
computing	convex	hull.

Sorting:	browser	the	games	with	ascending	prices	on	Steam.
Convex	hull:	computing	the	diameter	of	set	of	points.

1.1-2

Other	than	speed,	what	other	measures	of	efficiency	might	one	use	in	a	real-world
setting?

Memory	efficiency	and	coding	efficiency.

1.1-3

Select	a	data	structure	that	you	have	seen	previously,	and	discuss	its	strengths	and
limitations.

Linked-List:

Strengths:	insertion	and	deletion.
Limitations:	random	access.

1.1-4

How	are	the	shortest-path	and	traveling-salesman	problems	given	above	similar?	How
are	they	different?

Similar:	finding	path	with	shortest	distance.
Different:	traveling-salesman	has	more	constrains.

1.1-5

Come	up	with	a	real-word	problem	in	which	only	the	best	solution	will	do.	Then	come
up	with	one	in	which	a	solution	that	is	"approximately"	the	best	is	good	enough.

Best:	find	the	GCD	of	two	positive	integer	numbers.
Approximately:	find	the	solution	of	differential	equations.

1.1	Algorithms
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1.1	Algorithms
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1.2	Algorithm	as	a	technology

1.2-1

Give	an	example	of	an	application	that	requires	algorithmic	content	at	the	application
level,	and	discuss	the	function	of	the	algorithms	involved.

Drive	navigation.

1.2-2

Suppose	we	are	comparing	implementations	of	insertion	sort	and	merge	sort	on	the

same	machine.	For	inputs	of	size	 	,	insertion	sort	runs	in	 	steps,	while	merge	sort

runs	in	 	steps.	For	which	values	of	 	does	insertion	sort	beat	merge	sort?

1.2-3

What	is	the	smallest	value	of	n	such	that	an	algorithm	whose	running	time	is	
runs	faster	than	an	algorithm	whose	running	time	is	 	on	the	same	machine?

1.2	Algorithms	as	a	technology
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Problems

1-1	Comparison	of	running	times

For	each	function	 	and	time	 	in	the	following	table,	determine	the	largest	size	n	of
a	problem	that	can	be	solved	in	time	 	,	assuming	that	the	algorithm	to	solve	the

problem	takes	 	microseconds.

1
second

1
minute 1	hour 1	day 1	month 1	year 1

century

Problems
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import	math

def	log2(n):

				return	math.log(n)	/	math.log(2)

complexities	=	[lambda	n:	math.sqrt(n),

																lambda	n:	n,

																lambda	n:	n	*	log2(n),

																lambda	n:	n	**	2,

																lambda	n:	n	**	3,

																lambda	n:	2	**	n,

																lambda	n:	math.factorial(n)]

max_bound	=	[1e40,	1e20,	1e20,	1e10,	1e10,	100,	100]

times	=	[1000	*	1000,

									1000	*	1000	*	60,

									1000	*	1000	*	60	*	60,

									1000	*	1000	*	60	*	60	*	24,

									1000	*	1000	*	60	*	60	*	24	*	30,

									1000	*	1000	*	60	*	60	*	24	*	365,

									1000	*	1000	*	60	*	60	*	24	*	365	*	100]

print('	'.join(map(lambda	v:	'2^('	+	'{:.2e}'.format(v)	+	')',	times)))

for	k	in	range(len(complexities)):

				c	=	complexities[k]

				vals	=	[]

				for	t	in	times:

								l,	r	=	0,	int(max_bound[k])

								max_n	=	0

								while	l	<=	r:

												mid	=	(l	+	r)	//	2

												val	=	c(mid)

												if	val	==	float('inf')	or	val	>	t:

																r	=	mid	-	1

												else:

																l	=	mid	+	1

																max_n	=	max(max_n,	mid)

								vals.append(max_n)

				if	k	<	3:

								print('	'.join(map(lambda	v:	'{:.2e}'.format(v),	vals)))

				else:

								print('	'.join(map(lambda	v:	str(int(math.floor(v))),	vals)))

Problems
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2	Getting	Started
2.1	Insertion	sort
2.2	Analyzing	algorithms
2.3	Designing	algorithms
Problems

2	Getting	Started
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2.1	Insertion	sort

2.1-1

Using	Figure	2.2	as	a	model,	illustrate	the	operation	of	INSERTION-SORT	on	the	array

	.

2.1-2

Rewrite	the	INSERTION-SORT	procedure	to	sort	into	nonincreasing	instead	of
nondecreasing	order.

def	insertion_sort(a):

				for	j	in	range(1,	len(a)):

								key	=	a[j]

								i	=	j	-	1

								while	i	>=	0	and	a[i]	<	key:

												a[i	+	1]	=	a[i]

												i	-=	1

								a[i	+	1]	=	key

2.1-3

Consider	the	searching	problem:

Input:	A	sequence	of	 	numbers	 	and	a	value	 	.

Output:	An	index	 	such	that	 	or	the	special	value	NIL	if	 	does	not	appear	in
A.

Write	pseudocode	for	linear	search,	which	scans	through	the	sequence,	looking	for	 	.
Using	a	loop	invariant,	prove	that	your	algorithm	is	correct.	Make	sure	that	your	loop
invariant	fulfills	the	three	necessary	properties.

2.1	Insertion	sort
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def	linear_search(a,	v):

				for	i	in	range(len(a)):

								if	a[i]	==	v:

												return	i

				return	None

2.1-4

Consider	the	problem	of	adding	two	n-bit	binary	integers,	stored	in	two	n-element
arrays	 	and	 	.	The	sum	of	the	two	integers	should	be	stored	in	binary	form	in	an

	-element	array	 	.	State	the	problem	formally	and	write	pseudocode	for
adding	the	two	integers.

def	add_binary(a,	b):

				n	=	len(a)

				c	=	[0	for	_	in	range(n	+	1)]

				carry	=	0

				for	i	in	range(n):

								c[i]	=	a[i]	+	b[i]	+	carry

								if	c[i]	>	1:

												c[i]	-=	2

												carry	=	1

								else:

												carry	=	0

				c[n]	=	carry

				return	c

2.1	Insertion	sort
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2.2	Analyzing	algorithms

2.2-1

Express	the	function	 	in	terms	of	 	-notation.

2.2-2

Consider	sorting	 	numbers	stored	in	array	 	by	first	finding	the	smallest	element	of	

and	exchanging	it	with	the	element	in	 	.	Then	find	the	second	smallest	element	of

	,	and	exchange	it	with	 	.	Continue	in	this	manner	for	the	first	 	elements	of
A.	Write	pseudocode	for	this	algorithm,	which	is	known	as	selection	sort.	What	loop

invariant	does	this	algorithm	maintain?	Why	does	it	need	to	run	for	only	the	first	
elements,	rather	than	for	all	n	elements?	Give	the	best-case	and	worst-case	running
times	of	selection	sort	in	 	-notation.

def	selection_sort(a):

				for	i	in	range(len(a)):

								k	=	i

								for	j	in	range(i	+	1,	len(a)):

												if	a[j]	<	a[k]:

																k	=	j

								a[i],	a[k]	=	a[k],	a[i]

Best-case:	

Worst-case:	

2.2-3

Consider	linear	search	again	(see	Exercise	2.1	-	3).	How	many	elements	of	the	input
sequence	need	to	be	checked	on	the	average,	assuming	that	the	element	being
searched	for	is	equally	likely	to	be	any	element	in	the	array?	How	about	in	the	worst
case?	What	are	the	average-case	and	worst-case	running	times	of	linear	search	in	 	-
notation?	Justify	your	answers.

Average:	 	elements.	

2.2	Analyzing	algorithms
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Worst:	 	elements.	

2.2-4

How	can	we	modify	almost	any	algorithm	to	have	a	good	best-case	running	time?

Adding	special	case.

2.2	Analyzing	algorithms
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2.3	Designing	algorithms

2.3-1

Using	Figure	2.4	as	a	model,	illustrate	the	operation	of	merge	sort	on	the	array

	.

2.3-2

Rewrite	the	MERGE	procedure	so	that	it	does	not	use	sentinels,	instead	stopping	once
either	array	 	or	 	has	had	all	its	elements	copied	back	to	A	and	then	copying	the
remainder	of	the	other	array	back	into	 	.

def	merge_sort_sub(arr,	l,	r):

				if	l	>=	r:

								return

				mid	=	(l	+	r)	//	2

				merge_sort_sub(arr,	l,	mid)

				merge_sort_sub(arr,	mid+1,	r)

				arr_l	=	[arr[i]	for	i	in	range(l,	mid+1)]

				arr_r	=	[arr[j]	for	j	in	range(mid+1,	r+1)]

				i,	j	=	0,	0

				for	k	in	range(l,	r+1):

								if	j	==	len(arr_r)	or	(i	!=	len(arr_l)	and	arr_l[i]	<=	arr_r[j]):

												arr[k]	=	arr_l[i]

												i	+=	1

								else:

												arr[k]	=	arr_r[j]

												j	+=	1

def	merge_sort(arr):

				merge_sort_sub(arr,	0,	len(arr)	-	1)

2.3-3

2.3	Designing	algorithms
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Use	mathematical	induction	to	show	that	when	 	is	an	exact	power	of	2,	the	solution	of
the	recurrence

is	 	.

Assume	that	 	,	 	,	then	

	 	

	.

2.3-4

We	can	express	insertion	sort	as	a	recursive	procedure	as	follows.	In	order	to	sort

	,	we	recursively	sort	 	and	then	insert	 	into	the	sorted	array

	.	Write	a	recurrence	for	the	running	time	of	this	recursive	version	of
insertion	sort.

2.3-5

Referring	back	to	the	searching	problem	(see	Exercise	2.1-3),	observe	that	if	the
sequence	 	is	sorted,	we	can	check	the	midpoint	of	the	sequence	against	 	and
eliminate	half	of	the	sequence	from	further	consideration.	The	binary	search	algorithm
repeats	this	procedure,	halving	the	size	of	the	remaining	portion	of	the	sequence	each
time.	Write	pseudocode,	either	iterative	or	recursive,	for	binary	search.	Argue	that	the

worst-case	running	time	of	binary	search	is	 	.

2.3	Designing	algorithms
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def	binary_search(a,	v):

				l,	r	=	0,	len(a)-1

				while	l	<=	r:

								mid	=	(l	+	r)	//	2

								if	a[mid]	==	v:

												return	mid

								elif	a[mid]	<	v:

												l	=	mid	+	1

								else:

												r	=	mid	-	1

				return	None

2.3-6

Observe	that	the	while	loop	of	lines	5-7	of	the	INSERTION-SORT	procedure	in	Section

2.1	uses	a	linear	search	to	scan	(backward)	through	the	sorted	subarray	 	.
Can	we	use	a	binary	search	(see	Exercise	2.3	-	5)	instead	to	improve	the	overall	worst-

case	running	time	of	insertion	sort	to	 	?

No,	still	has	to	move	the	elements	for	 	in	each	iteration.

2.3-7	

Describe	a	 	-time	algorithm	that,	given	a	set	 	of	 	integers	and	another
integer	 	,	determines	whether	or	not	there	exist	two	elements	in	 	whose	sum	is
exactly	 	.

Sort	the	elements	then:

def	two_sum(a,	x):

				l,	r	=	0,	len(a)-1

				while	l	<	r:

								if	a[l]	+	a[r]	==	x:

												return	True

								elif	a[l]	+	a[r]	<	x:

												l	+=	1

								else:

												r	-=	1

				return	False

2.3	Designing	algorithms
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Problems

2-1	Insertion	sort	on	small	arrays	in	merge	sort

Although	merge	sort	runs	in	 	worst-case	time	and	insertion	sort	runs	in

	worst-case	time,	the	constant	factors	in	insertion	sort	can	make	it	faster	in
practice	for	small	problem	sizes	on	many	machines.	Thus,	it	makes	sense	to	coarsen
the	leaves	of	the	recursion	by	using	insertion	sort	within	merge	sort	when	subproblems
become	sufficiently	small.	Consider	a	modification	to	merge	sort	in	which	
sublists	of	length	 	are	sorted	using	insertion	sort	and	then	merged	using	the	standard
merging	mechanism,	where	 	is	a	value	to	be	determined.

a.	Show	that	insertion	sort	can	sort	the	 	sublists,	each	of	length	 	,	in	
worst-case	time.

b.	Show	how	to	merge	the	sublists	in	 	worst-case	time.

Layers:	
Each:	

c.	Given	that	the	modified	algorithm	runs	in	 	worst-case	time,
what	is	the	largest	value	of	k	as	a	function	of	n	for	which	the	modified	algorithm	has	the
same	running	time	as	standard	merge	sort,	in	terms	of	 	-notation?

Since	 	,	thus	 	,	 	.

d.	How	should	we	choose	 	in	practice?

Profiling	with	large	data	set.

2-2	Correctness	of	bubblesort

Problems
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Bubblesort	is	a	popular,	but	inefficient,	sorting	algorithm.	It	works	by	repeatedly
swapping	adjacent	elements	that	are	out	of	order.

BUBBLESORT(A)

1	for	i=	1	to	A.length	-	1

2					for	j	=	A.length	downto	i	+	1

3									if	A[j]	<	A[j	-	1]

4													exchange	A[j]	with	A[j	-	1]

a.	Let	 	denote	the	output	of	BUBBLESORT(A).	To	prove	that	BUBBLESORT	is
correct,	we	need	to	prove	that	it	terminates	and	that

	(2.3)

where	 	=	 	.length.	In	order	to	show	that	BUBBLESORT	actually	sorts,	what	else	do
we	need	to	prove?

	is	a	permutation	of	 	.

b.	State	precisely	a	loop	invariant	for	the	for	loop	in	lines	2–4,	and	prove	that	this	loop
invariant	holds.	Your	proof	should	use	the	structure	of	the	loop	invariant	proof	presented
in	this	chapter.

Initialization:	A[1]	is	sorted
Maintenance:	Move	the	smallest	element	to	the	left
Termination:	A[1..i]	is	sorted	with	the	next	smallest	element	in	A[i]

c.	Using	the	termination	condition	of	the	loop	invariant	proved	in	part	(b),	state	a	loop
invariant	for	the	for	loop	in	lines	1–4	that	will	allow	you	to	prove	inequality	(2.3).	Your
proof	should	use	the	structure	of	the	loop	invariant	proof	presented	in	this	chapter.

Initialization:	A[1..i-1]	is	sorted	with	smallest	elements
Maintenance:	Move	the	next	smallest	element	to	A[i]	and	A[i	-	1]	<=	A[i]
Termination:	(2.3)

d.	What	is	the	worst-case	running	time	of	bubblesort?	How	does	it	compare	to	the
running	time	of	insertion	sort?

For	average	case	insertion	sort	is	better.

2-3	Correctness	of	Horner’s	rule

Problems
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The	following	code	fragment	implements	Horner’s	rule	for	evaluating	a	polynomial

given	the	coefficients	 	and	a	value	for	 	:

1	y	=	0

2	for	i	=	n	downto	0

3					y	=	ai	+	x	y

a.	In	terms	of	 	-notation,	what	is	the	running	time	of	this	code	fragment	for	Horner’s
rule?

b.	Write	pseudocode	to	implement	the	naive	polynomial-evaluation	algorithm	that
computes	each	term	of	the	polynomial	from	scratch.	What	is	the	running	time	of	this
algorithm?	How	does	it	compare	to	Horner’s	rule?

def	polynomial_evaluation(a,	x):

				sum	=	0

				for	i	in	range(len(a)):

								sum	+=	a[i]	*	x	**	i

				return	sum

c.	Consider	the	following	loop	invariant:

At	the	start	of	each	iteration	of	the	for	loop	of	lines	2–3,

	.

Interpret	a	summation	with	no	terms	as	equaling	0.	Following	the	structure	of	the	loop
invariant	proof	presented	in	this	chapter,	use	this	loop	invariant	to	show	that,	at

termination,	 	.

Initialization:	

Maintenance:	

	 	

Termination:	

Problems
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d.	Conclude	by	arguing	that	the	given	code	fragment	correctly	evaluates	a	polynomial
characterized	by	the	coefficients	 	.

2-4	Inversions

Let	 	be	an	array	of	n	distinct	numbers.	If	 	and	A[i]	>	A[j],	then	the	pair

	is	called	an	inversion	of	A.

a.	List	the	five	inversions	of	the	array	 	.

b.	What	array	with	elements	from	the	set	 	has	the	most	inversions?	How
many	does	it	have?

Most:	

How	many:	

c.	What	is	the	relationship	between	the	running	time	of	insertion	sort	and	the	number	of
inversions	in	the	input	array?	Justify	your	answer.

Equal

d.	Give	an	algorithm	that	determines	the	number	of	inversions	in	any	permutation	on	

elements	in	 	worst-case	time.	(Hint:	Modify	merge	sort.)

Problems
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def	count_inversion_sub(arr,	l,	r):

				if	l	>=	r:

								return	0

				mid	=	(l	+	r)	//	2

				cnt	=	count_inversion_sub(arr,	l,	mid)	+	count_inversion_sub(arr,	mid+1,	r)

				arr_l	=	[arr[i]	for	i	in	range(l,	mid+1)]

				arr_l.append(1e100)

				arr_r	=	[arr[j]	for	j	in	range(mid+1,	r+1)]

				arr_r.append(1e100)

				i,	j	=	0,	0

				for	k	in	range(l,	r+1):

								if	arr_l[i]	<=	arr_r[j]:

												arr[k]	=	arr_l[i]

												i	+=	1

								else:

												arr[k]	=	arr_r[j]

												j	+=	1

												cnt	+=	len(arr_l)	-	i	-	1

				return	cnt

def	count_inversion(arr):

				return	count_inversion_sub(arr,	0,	len(arr)	-	1)

Problems
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3	Growth	of	Functions
3.1	Asymptotic	notation
3.2	Standard	notations	and	common	functions
Problems
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3.1	Asymptotic	notation

3.1-1

Let	 	and	 	be	asymptotically	nonnegative	functions.	Using	the	basic	definition

of	 	-notation,	prove	that	 	.

3.1-2

Show	that	for	any	real	constants	 	and	 	,	where	 	,	 	.

If	 	,	then	 	;

If	 	,	let	 	,	then	 	,

Since	 	,	therefore	 	.

3.1-3

Explain	why	the	statement,	"The	running	time	of	algorithm	 	is	at	least	 	,"	is
meaningless.

	is	an	upper	bound,	which	means	 	could	be	 	.

3.1-4

Is	 	?	Is	 	?

	?

	,	thus	 	.

	?

3.1	Asymptotic	notation
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	which	is	impossible,	thus	 	.

3.1-5

Prove	Theorem	3.1.

Theorem	3.1

For	any	two	function	 	and	 	,	we	have	 	if	and	only	if

	and	 	.

	implies	

	implies	

Thus	 	,	 	,	and	vice	versa.

3.1-6

Prove	that	the	running	time	of	an	algorithm	is	 	if	and	only	if	its	worst-case

running	time	is	 	and	its	best-case	running	time	is	 	.

Theorem	3.1

3.1-7

Prove	that	 	is	the	empty	set.

There	is	no	 	that	 	and	 	.

3.1-8

We	can	extend	our	notation	to	the	case	of	two	parameters	 	and	 	that	can	go	to

infinity	independently	at	different	rates.	For	a	given	function	 	,	we	denote	by

	the	set	of	functions

	:	there	exist	positive	constants	 	,	 	,	and	 	such	that

	for	all	 	or	 	 	.

Give	corresponding	definitions	for	 	and	 	.

3.1	Asymptotic	notation
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	:	there	exist	positive	constants	 	,	 	,	and	 	such	that

	for	all	 	or	 	 	.

	:	there	exist	positive	constants	 	,	 	,	 	,	and	 	such

that	 	for	all	 	or	 	 	.

3.1	Asymptotic	notation
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3.2	Standard	notations	and	common	functions

3.2-1

Show	that	if	 	and	 	are	monotonically	increasing	functions,	then	so	are	the

functions	 	and	 	,	and	if	 	and	 	are	in	addition

nonnegative,	then	 	is	monotonically	increasing.

	and	

	and	

3.2-2

Prove	equation	(3.16).

	(3.16)

3.2-3

3.2	Standard	notations	and	common	functions
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Prove	equation	(3.19).	Also	prove	that	 	and	 	.

	(3.19)

Use	Stirling's	approximation:

	

	

3.2-4	

Is	the	function	 	polynomially	bounded?	Is	the	function	 	polynomially
bounded?

	 	

	

	

	not	bounded.

	

	 	

3.2	Standard	notations	and	common	functions
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	 	 	,	is	polynomially	bounded.

3.2-5	

Which	is	asymptotically	larger:	 	or	 	?

	and	

	and	

	 	<	

	The	right	hand	side	is	larger.

3.2-6

Show	that	the	golden	ratio	 	and	its	conjugate	 	both	satisfy	the	equation

	.

3.2-7

Prove	by	induction	that	the	 	th	Fibonacci	number	satisfies	the	equality

where	 	is	the	golden	ratio	and	 	is	its	conjugate.

	,	

3.2	Standard	notations	and	common	functions
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	,	

Suppose	 	and	 	,

Based	on	the	previous	exercise,

	

3.2-8

Show	that	 	implies	 	.

	

	

	

	

	

	

	 	and	

	

	

3.2	Standard	notations	and	common	functions
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Problems

3-1	Asymptotic	behavior	of	polynomials

Let

	,

where	 	,	be	a	degree-	 	polynomial	in	 	,	and	let	 	be	a	constant.	Use	the
definitions	of	the	asymptotic	notations	to	prove	the	following	properties.

a.	If	 	,	then	

b.	If	 	,	then	

c.	If	 	,	then	

	and	

d.	If	 	,	then	

e.	If	 	,	then	

3-2	Relative	asymptotic	growths

Problems
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Indicate,	for	each	pair	of	expressions	 	in	the	table	below,	whether	 	is	 	,	 	,

	,	 	,	or	 	of	 	.	Assume	that	 	,	 	,	and	 	are	constants.	Your
answer	should	be	in	the	form	of	the	table	with	"yes"	or	"no"	written	in	each	box.

yes yes no no no

yes yes no no no

no no no no no

no no yes yes no

yes no yes no yes

yes no yes no yes

3-3	Ordering	by	asymptotic	growth	rates

a.	Rank	the	following	functions	by	order	of	growth;	that	is,	find	an	arrangement

	of	the	functions	satisfying	 	,	 	,	 	,

	.	Partition	your	list	into	equivalence	classes	such	that	functions	

and	 	are	in	the	same	class	if	and	only	if	 	.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

b.	Give	an	example	of	a	single	nonnegative	function	 	such	that	for	all	functions

	in	part	(a),	 	is	neither	 	nor	 	.

3-4	Asymptotic	notation	properties

Let	 	and	 	be	asymptotically	positive	functions.	Prove	or	disprove	each	of	the
following	conjectures.

a.	 	implies	 	.

Problems
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False,	 	,	 	.

b.	 	.

False,	 	,	 	.

c.	 	implies	 	,	where	

and	 	for	all	sufficiently	large	 	.

True.

d.	 	implies	 	.

False,	 	,	 	.

e.	

False,	 	.

f.	 	implies	 	.

True.

g.	 	.

False,	 	,	 	.

h.	 	.

False.

3-5	Variations	on	 	and	

Problems
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Some	authors	define	 	in	a	slightly	different	way	than	we	do;	let’s	use	 	(read	"omega

infinity")	for	this	alternative	definition.	We	say	that	 	if	there	exists	a

positive	constant	c	such	that	 	for	infinitely	many	integers	 	.

3-6	Iterated	functions

We	can	apply	the	iteration	operator	 	used	in	the	 	function	to	any	monotonically

increasing	function	 	over	the	reals.	For	a	given	constant	 	,	we	define	the

iterated	function	 	by

	,

which	need	not	be	well	defined	in	all	cases.	In	other	words,	the	quantity	 	is	the
number	of	iterated	applications	of	the	function	f	required	to	reduce	its	argument	down	to
	or	less.

For	each	of	the	following	functions	 	and	constants	 	,	give	as	tight	a	bound	as

possible	on	 	.

0

1

1

2

2

1 not	converge

2

2
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4	Divide-and-Conquer
4.1	The	maximum-subarray	problem
4.2	Strassen's	algorithm	for	matrix	multiplication
4.3	The	substitution	method	for	solving	recurrences
4.4	The	recursion-tree	method	for	solving	recurrences
4.5	The	master	method	for	solving	recurrences
4.6	Proof	of	the	master	theorem
Problems
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4.1	The	maximum-subarray	problem

4.1-1

What	does	FIND-MAXIMUM-SUBARRAY	return	when	all	elements	of	 	are	negative?

(smallest_index,	smallest_index,	smallest_value)

4.1-2

Write	pseudocode	for	the	brute-force	method	of	solving	the	maximum-subarray

problem.	Your	procedure	should	run	in	 	time.

def	find_maximum_subarray(arr):

				sums	=	[0]

				for	a	in	arr:

								sums.append(sums[-1]	+	a)

				max_sum	=	-1e100

				left_index	=	-1

				right_index	=	-1

				for	i	in	range(len(arr)):

								for	j	in	range(i,	len(arr)):

												if	sums[j	+	1]	-	sums[i]	>	max_sum:

																max_sum	=	sums[j	+	1]	-	sums[i]

																left_index	=	i

																right_index	=	j

				return	left_index,	right_index,	max_sum

4.1-3

Implement	both	the	brute-force	and	recursive	algorithms	for	the	maximumsubarray
problem	on	your	own	computer.	What	problem	size	 	gives	the	crossover	point	at
which	the	recursive	algorithm	beats	the	brute-force	algorithm?	Then,	change	the	base
case	of	the	recursive	algorithm	to	use	the	brute-force	algorithm	whenever	the	problem
size	is	less	than	 	.	Does	that	change	the	crossover	point?

4.1	The	maximum-subarray	problem

44



def	find_max_crossing_subarray(arr,	low,	mid,	high):

				left_sum	=	-1e100

				sum	=	0

				for	i	in	range(mid	-	1,	low	-	1,	-1):

								sum	=	sum	+	arr[i]

								if	sum	>	left_sum:

												left_sum	=	sum

												max_left	=	i

				right_sum	=	-1e100

				sum	=	0

				for	j	in	range(mid,	high):

								sum	=	sum	+	arr[j]

								if	sum	>	right_sum:

												right_sum	=	sum

												max_right	=	j

				return	max_left,	max_right,	left_sum	+	right_sum

def	find_maximum_subarray(arr,	low,	high):

				if	low	>=	high:

								return	-1,	-1,	-1e100

				if	low	+	1	==	high:

								return	low,	low,	arr[low]

				mid	=	(low	+	high)	//	2

				left_low,	left_high,	left_sum	=	find_maximum_subarray(arr,	low,	mid)

				right_low,	right_high,	right_sum	=	find_maximum_subarray(arr,	mid,	high)

				cross_low,	cross_high,	cross_sum	=	find_max_crossing_subarray(arr,	low,	mid,	high)

				if	left_sum	>=	right_sum	and	left_sum	>=	cross_sum:

								return	left_low,	left_high,	left_sum

				if	right_sum	>=	left_sum	and	right_sum	>=	cross_sum:

								return	right_low,	right_high,	right_sum

				return	cross_low,	cross_high,	cross_sum

4.1-4

Suppose	we	change	the	definition	of	the	maximum-subarray	problem	to	allow	the	result
to	be	an	empty	subarray,	where	the	sum	of	the	values	of	an	empty	subarray	is	0.	How
would	you	change	any	of	the	algorithms	that	do	not	allow	empty	subarrays	to	permit	an
empty	subarray	to	be	the	result?

Return	empty	if	the	result	is	negative.

4.1-5

4.1	The	maximum-subarray	problem
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Use	the	following	ideas	to	develop	a	nonrecursive,	linear-time	algorithm	for	the
maximum-subarray	problem.	Start	at	the	left	end	of	the	array,	and	progress	toward

subarray	seen	so	far.	Knowing	a	maximum	subarray	of	 	,	extend	the	answer

to	find	a	maximum	subarray	ending	at	index	 	by	using	the	following	observation:

a	maximum	subarray	of	 	is	either	a	maximum	subarray	of	 	or

a	subarray	 	,	for	some	 	.	Determine	a	maximum

subarray	of	the	form	 	in	constant	time	based	on	knowing	a	maximum

subarray	ending	at	index	 	.

def	find_maximum_subarray(arr):

				max_sum	=	-1e100

				max_left,	max_right	=	-1,	-1

				sum	=	0

				last_left	=	0

				for	i	in	range(len(arr)):

								sum	+=	arr[i]

								if	sum	>	max_sum:

												max_sum	=	sum

												max_left	=	last_left

												max_right	=	i

								if	sum	<	0:

												sum	=	0

												last_left	=	i	+	1

				return	max_left,	max_right,	max_sum

4.1	The	maximum-subarray	problem
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4.2	Strassen's	algorithm	for	matrix
multiplication

4.2-1

Use	Strassen’s	algorithm	to	compute	the	matrix	product

	.

Show	your	work.

4.2	Strassen's	algorithm	for	matrix	multiplication

47



4.2-2

Write	pseudocode	for	Strassen’s	algorithm.

4.2	Strassen's	algorithm	for	matrix	multiplication
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def	matrix_product_strassen_sub(a,	b,	r_low,	r_high,	c_low,	c_high):

				n	=	r_high	-	r_low

				if	n	==	1:

								return	[[a[r_low][c_low]	*	b[r_low][c_low]]]

				mid	=	n	//	2

				r_mid	=	(r_low	+	r_high)	//	2

				c_mid	=	(c_low	+	c_high)	//	2

				s	=	[[[0	for	_	in	range(mid)]	for	_	in	range(mid)]	for	_	in	range(10)]

				for	i	in	range(mid):

								for	j	in	range(mid):

												s[0][i][j]	=	b[r_low	+	i][c_mid	+	j]	-	b[r_mid	+	i][c_mid	+	j]

												s[1][i][j]	=	a[r_low	+	i][c_low	+	j]	+	a[r_low	+	i][c_mid	+	j]

												s[2][i][j]	=	a[r_mid	+	i][c_low	+	j]	+	a[r_mid	+	i][c_mid	+	j]

												s[3][i][j]	=	b[r_mid	+	i][c_low	+	j]	-	b[r_low	+	i][c_low	+	j]

												s[4][i][j]	=	a[r_low	+	i][c_low	+	j]	+	a[r_mid	+	i][c_mid	+	j]

												s[5][i][j]	=	b[r_low	+	i][c_low	+	j]	+	b[r_mid	+	i][c_mid	+	j]

												s[6][i][j]	=	a[r_low	+	i][c_mid	+	j]	-	a[r_mid	+	i][c_mid	+	j]

												s[7][i][j]	=	b[r_mid	+	i][c_low	+	j]	+	b[r_mid	+	i][c_mid	+	j]

												s[8][i][j]	=	a[r_low	+	i][c_low	+	j]	-	a[r_mid	+	i][c_low	+	j]

												s[9][i][j]	=	b[r_low	+	i][c_low	+	j]	+	b[r_low	+	i][c_mid	+	j]

				p	=	[[[0	for	_	in	range(mid)]	for	_	in	range(mid)]	for	_	in	range(7)]

				for	i	in	range(mid):

								for	j	in	range(mid):

												for	k	in	range(mid):

																p[0][i][j]	+=	a[r_low	+	i][c_low	+	k]	*	s[0][k][j]

																p[1][i][j]	+=	s[1][i][k]	*	b[r_mid	+	k][c_mid	+	j]

																p[2][i][j]	+=	s[2][i][k]	*	b[r_low	+	k][c_low	+	j]

																p[3][i][j]	+=	a[r_mid	+	i][c_mid	+	k]	*	s[3][k][j]

																p[4][i][j]	+=	s[4][i][k]	*	s[5][k][j]

																p[5][i][j]	+=	s[6][i][k]	*	s[7][k][j]

																p[6][i][j]	+=	s[8][i][k]	*	s[9][k][j]

				c	=	[[0	for	_	in	range(n)]	for	_	in	range(n)]

				for	i	in	range(mid):

								for	j	in	range(mid):

												c[r_low	+	i][c_low	+	j]	=	p[4][i][j]	+	p[3][i][j]	-	p[1][i][j]	+	p[5][i][j

]

												c[r_low	+	i][c_mid	+	j]	=	p[0][i][j]	+	p[1][i][j]

												c[r_mid	+	i][c_low	+	j]	=	p[2][i][j]	+	p[3][i][j]

												c[r_mid	+	i][c_mid	+	j]	=	p[4][i][j]	+	p[0][i][j]	-	p[2][i][j]	-	p[6][i][j

]

				return	c

def	matrix_product_strassen(a,	b):

				n	=	len(a)

				return	matrix_product_strassen_sub(a,	b,	0,	n,	0,	n)

4.2-3

4.2	Strassen's	algorithm	for	matrix	multiplication
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How	would	you	modify	Strassen’s	algorithm	to	multiply	 	matrices	in	which	 	is

not	an	exact	power	of	 	?	Show	that	the	resulting	algorithm	runs	in	time	 	.

Extend	the	matrix	with	zeros.

4.2-4

What	is	the	largest	 	such	that	if	you	can	multiply	 	matrices	using	k
multiplications	(not	assuming	commutativity	of	multiplication),	then	you	can	multiply

	matrices	in	time	 	?	What	would	the	running	time	of	this	algorithm	be?

Running	time:	

4.2-5

V.	Pan	has	discovered	a	way	of	multiplying	 	matrices	using	

multiplications,	a	way	of	multiplying	 	matrices	using	 	multiplications,

and	a	way	of	multiplying	 	matrices	using	 	multiplications.	Which
method	yields	the	best	asymptotic	matrix-multiplication	algorithm?	How	does	it	compare
to	Strassen’s	algorithm?

4.2-6

How	quickly	can	you	multiply	a	 	matrix	by	an	 	matrix,	using	Strassen’s
algorithm	as	a	subroutine?	Answer	the	same	question	with	the	order	of	the	input
matrices	reversed.

Reversed:	

4.2	Strassen's	algorithm	for	matrix	multiplication
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4.2-7

Show	how	to	multiply	the	complex	numbers	 	and	 	using	only	three
multiplications	of	real	numbers.	The	algorithm	should	take	 	,	 	,	 	,	and	 	as	input	and

produce	the	real	component	 	and	the	imaginary	component	
separately.

Real	component:	

Image	component:	

4.2	Strassen's	algorithm	for	matrix	multiplication
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4.3	The	substitution	method	for	solving
recurrences

4.3-1

Show	that	the	solution	of	 	is	 	.

Suppose	

4.3-2

Show	that	the	solution	of	 	is	 	.

Suppose	

4.3-3

We	saw	that	the	solution	of	 	is	 	.	Show	that	the

solution	of	this	recurrence	is	also	 	.	Conclude	that	the	solution	is	
.

Suppose	

4.3	The	substitution	method	for	solving	recurrences
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4.3-4

Show	that	by	making	a	different	inductive	hypothesis,	we	can	overcome	the	difficulty

with	the	boundary	condition	 	for	recurrence	(4.19)	without	adjusting	the
boundary	conditions	for	the	inductive	proof.

Suppose	

When	 	,	 	.

4.3-5

Show	that	 	is	the	solution	to	the	"exact"	recurrence	(4.3)	for	merge	sort.

We	know	 	is	 	.

Based	on	4.3-3,	 	is	 	.

Therefore,	 	is	 	.

4.3-6

Show	that	the	solution	to	 	is	 	.

Suppose	

4.3-7

4.3	The	substitution	method	for	solving	recurrences
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Using	the	master	method	in	Section	4.5,	you	can	show	that	the	solution	to	the

recurrence	 	is	 	.	Show	that	a

substitution	proof	with	the	assumption	 	fails.	Then	show	how	to
subtract	off	a	lower-order	term	to	make	a	substitution	proof	work.

Suppose	

Suppose	

4.3-8

Using	the	master	method	in	Section	4.5,	you	can	show	that	the	solution	to	the

recurrence	 	is	 	.	Show	that	a	substitution

proof	with	the	assumption	 	fails.	Then	show	how	to	subtract	off	a	lower-
order	term	to	make	a	substitution	proof	work.

Suppose	

Suppose	

4.3-9

Solve	the	recurrence	 	by	making	a	change	of	variables.
Your	solution	should	be	are	integral.

Let	

4.3	The	substitution	method	for	solving	recurrences
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4.3	The	substitution	method	for	solving	recurrences
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4.4	The	recursion-tree	method	for	solving
recurrences

4.4-1

Use	a	recursion	tree	to	determine	a	good	asymptotic	upper	bound	on	the	recurrence

	.	Use	the	substitution	method	to	verify	your	answer.

4.4-2

Use	a	recursion	tree	to	determine	a	good	asymptotic	upper	bound	on	the	recurrence

	.	Use	the	substitution	method	to	verify	your	answer.

4.4-3

Use	a	recursion	tree	to	determine	a	good	asymptotic	upper	bound	on	the	recurrence

	.	Use	the	substitution	method	to	verify	your	answer.

4.4	The	recursion-tree	method	for	solving	recurrences
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4.4-4

Use	a	recursion	tree	to	determine	a	good	asymptotic	upper	bound	on	the	recurrence

	.	Use	the	substitution	method	to	verify	your	answer.

4.4-5

Use	a	recursion	tree	to	determine	a	good	asymptotic	upper	bound	on	the	recurrence

	.	Use	the	substitution	method	to	verify	your
answer.

4.4-6

Argue	that	the	solution	to	the	recurrence	 	,

where	 	is	a	constant,	is	 	by	appealing	to	a	recursion	tree.

Shortest	path	is	 	.

4.4-7

4.4	The	recursion-tree	method	for	solving	recurrences
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Draw	the	recursion	tree	for	 	,	where	 	is	a	constant,	and
provide	a	tight	asymptotic	bound	on	its	solution.	Verify	your	bound	by	the	substitution
method.

	.

4.4-8

Use	a	recursion	tree	to	give	an	asymptotically	tight	solution	to	the	recurrence

	,	where	 	and	 	are	constants.

4.4-9

Use	a	recursion	tree	to	give	an	asymptotically	tight	solution	to	the	recurrence

	,	where	 	is	a	constant	in	the	range
	and	 	is	also	a	constant.

4.4	The	recursion-tree	method	for	solving	recurrences
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4.5	The	master	method	for	solving	recurrences

4.5-1

Use	the	master	method	to	give	tight	asymptotic	bounds	for	the	following	recurrences.

a.	 	.

b.	 	.

c.	 	.

d.	

4.5-2

Professor	Caesar	wishes	to	develop	a	matrix-multiplication	algorithm	that	is
asymptotically	faster	than	Strassen’s	algorithm.	His	algorithm	will	use	the	divide	and

conquer	method,	dividing	each	matrix	into	pieces	of	size	 	,	and	the	divide

and	combine	steps	together	will	take	 	time.	He	needs	to	determine	how	many
subproblems	his	algorithm	has	to	create	in	order	to	beat	Strassen’s	algorithm.	If	his

algorithm	creates	a	subproblems,	then	the	recurrence	for	the	running	time	

becomes	 	.	What	is	the	largest	integer	value	of	 	for
which	Professor	Caesar’s	algorithm	would	be	asymptotically	faster	than	Strassen’s
algorithm?

The	largest	 	is	48.

4.5-3

4.5	The	master	method	for	solving	recurrences
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Use	the	master	method	to	show	that	the	solution	to	the	binary-search	recurrence

	is	 	.	(See	Exercise	2.3-5	for	a
description	of	binary	search.)

4.5-4

Can	the	master	method	be	applied	to	the	recurrence	 	?
Why	or	why	not?	Give	an	asymptotic	upper	bound	for	this	recurrence.

No.	 	.

4.5-5	

Consider	the	regularity	condition	 	for	some	constant	 	,	which

is	part	of	case	3	of	the	master	theorem.	Give	an	example	of	constants	 	and

	and	a	function	 	that	satisfies	all	the	conditions	in	case	3	of	the	master
theorem	except	the	regularity	condition.

4.5	The	master	method	for	solving	recurrences
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4.6	Proof	of	the	master	theorem

4.6-1	

Give	a	simple	and	exact	expression	for	 	in	equation	(4.27)	for	the	case	in	which	b	is
a	positive	integer	instead	of	an	arbitrary	real	number.

4.6-2	

Show	that	if	 	,	where	 	,	then	the	master	recurrence

has	solution	 	.	For	simplicity,	confine	your	analysis	to
extract	powers	of	 	.

4.6-3	

Show	that	case	3	of	the	master	theorem	is	overstated,	in	the	sense	that	the	regularity

condition	 	for	some	constant	 	implies	that	there	exists	a

constant	 	such	that	 	.

4.6	Proof	of	the	master	theorem
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Problems

4-1	Recurrence	examples

Give	asymptotic	upper	and	lower	bounds	for	 	in	each	of	the	following

recurrences.	Assume	that	 	is	constant	for	 	.	Make	your	bounds	as	tight	as
possible,	and	justify	your	answers.

a.	 	.

b.	 	.

c.	 	.

d.	 	.

e.	 	.

f.	 	.

g.	 	.

4-2	Parameter-passing	costs

Problems
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Throughout	this	book,	we	assume	that	parameter	passing	during	procedure	calls	takes
constant	time,	even	if	an	 	-element	array	is	being	passed.	This	assumption	is	valid	in
most	systems	because	a	pointer	to	the	array	is	passed,	not	the	array	itself.

This	problem	examines	the	implications	of	three	parameter-passing	strategies:

1.	 An	array	is	passed	by	pointer.	Time	 	.

2.	 An	array	is	passed	by	copying.	Time	 	where	 	is	the	size	of	the	array.
3.	 An	array	is	passed	by	copying	only	the	subrange	that	might	be	accessed	by	the

called	procedure.	Time	D	 	if	the	subarray	 	is	passed.

a.	Consider	the	recursive	binary	search	algorithm	for	finding	a	number	in	a	sorted	array
(see	Exercise	2.3-5).	Give	recurrences	for	the	worst-case	running	times	of	binary
search	when	arrays	are	passed	using	each	of	the	three	methods	above,	and	give	good
upper	bounds	on	the	solutions	of	the	recurrences.	Let	 	be	the	size	of	the	original
problem	and	 	be	the	size	of	a	subproblem.

1.	

2.	

3.	

b.	Redo	part	(a)	for	the	MERGE-SORT	algorithm	from	Section	2.3.1.

1.	

2.	

3.	

4-3	More	recurrence	examples

Give	asymptotic	upper	and	lower	bounds	for	 	in	each	of	the	following

recurrences.	Assume	that	 	is	constant	for	sufficiently	small	 	.	Make	your	bounds
as	tight	as	possible,	and	justify	your	answers.

a.	 	.

b.	 	.

For	harmonic	series:

Problems
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Therefore,	harmonic	series	are	

c.	 	.

d.	 	.

e.	 	.

Same	as	b,

f.	 	.

g.	 	.

h.	 	.

Problems
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i.	 	.

j.	 	.

Let	 	,

Let	 	,	 	,

	

	

4-4	Fibonacci	numbers

Problems
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This	problem	develops	properties	of	the	Fibonacci	numbers,	which	are	defined	by
recurrence	(3.22).	We	shall	use	the	technique	of	generating	functions	to	solve	the
Fibonacci	recurrence.	Define	the	generating	function	(or	formal	power	series)	 	as

where	 	is	the	 	th	Fibonacci	number.

a.	Show	that	 	.

b.	Show	that

and

Problems
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c.	Show	that

	.

	,

d.	Use	part	(c)	to	prove	that	 	for	 	,	rounded	to	the	nearest	integer.

(Hint:	Observe	that	 	.)

4-5	Chip	testing

Problems
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Professor	Diogenes	has	 	supposedly	identical	integrated-circuit	chips	that	in	principle
are	capable	of	testing	each	other.	The	professor’s	test	jig	accommodates	two	chips	at	a
time.	When	the	jig	is	loaded,	each	chip	tests	the	other	and	reports	whether	it	is	good	or
bad.	A	good	chip	always	reports	accurately	whether	the	other	chip	is	good	or	bad,	but
the	professor	cannot	trust	the	answer	of	a	bad	chip.	Thus,	the	four	possible	outcomes
of	a	test	are	as	follows:

Chip	A	says Chip	B	says Conclusion

B	is	good A	is	good both	are	good,	or	both	are	bad

B	is	good A	is	bad at	least	one	is	bad

B	is	bad A	is	good at	least	one	is	bad

B	is	bad A	is	bad at	least	one	is	bad

a.	Show	that	if	more	than	 	chips	are	bad,	the	professor	cannot	necessarily
determine	which	chips	are	good	using	any	strategy	based	on	this	kind	of	pairwise	test.
Assume	that	the	bad	chips	can	conspire	to	fool	the	professor.

Symmetric.

b.	Consider	the	problem	of	finding	a	single	good	chip	from	among	 	chips,	assuming

that	more	than	 	of	the	chips	are	good.	Show	that	 	pairwise	tests	are
sufficient	to	reduce	the	problem	to	one	of	nearly	half	the	size.

First	assume	 	is	even,	then	divide	the	chips	in	two	groups,	test	each	pair	of	chips	with	the
same	index	from	the	two	groups.	If	the	result	are	is	good,	we	keep	one	of	chips;	otherwise
we	remove	both	the	chips.	If	 	is	odd,	if	there	are	odd	number	of	chips	left	after	the
selections,	then	there	must	be	more	good	chips	than	bad	chips,	we	can	simply	discard	the
odd	chip;	otherwise	if	there	are	even	number	of	chips,	then	if	there	are	equal	number	of
good	and	bad	chips,	the	odd	one	must	be	good,	and	if	there	are	more	good	chips	than	bad
chips,	the	difference	must	be	larger	or	equal	to	2,	therefore	we	can	safely	add	the	odd	one	to
the	set	for	next	iteration.

Problems
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import	random

class	Chip:

				def	__init__(self,	state):

								self.state	=	state

				def	check(self,	other):

								if	self.state:

												return	other.state

								return	random.randint(0,	1)

def	check(chip_a,	chip_b):

				return	chip_a.check(chip_b)	and	chip_b.check(chip_a)

def	choose_good_chip(chips):

				assert(len(chips)	>	0)

				if	len(chips)	==	1:

								return	chips[0]

				mid	=	len(chips)	//	2

				next_chips	=	[]

				for	i	in	range(mid):

								if	check(chips[i],	chips[mid	+	i]):

												next_chips.append(chips[i])

				if	len(chips)	%	2	==	1	and	len(next_chips)	%	2	==	0:

								next_chips.append(chips[-1])

				return	choose_good_chip(next_chips)

c.	Show	that	the	good	chips	can	be	identified	with	 	pairwise	tests,	assuming	that

more	than	 	of	the	chips	are	good.	Give	and	solve	the	recurrence	that	describes	the
number	of	tests.

Based	on	master	method,	

4-6	Monge	arrays

Problems
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An	 	array	 	of	real	numbers	is	a	Monge	array	if	for	all	 	,	 	,	 	and	 	such	that

	and	 	,	we	have

	.

In	other	words,	whenever	we	pick	two	rows	and	two	columns	of	a	Monge	array	and
consider	the	four	elements	at	the	intersections	of	the	rows	and	the	columns,	the	sum	of
the	upper-left	and	lower-right	elements	is	less	than	or	equal	to	the	sum	of	the	lower-left
and	upper-right	elements.	For	example,	the	following	array	is	Monge:

a.	Prove	that	an	array	is	Monge	if	and	only	if	for	all	 	and

	,	we	have

	.

(Hint:	For	the	"if"	part,	use	induction	separately	on	rows	and	columns.)

If	 	,	it	contradicts	the	definition
of	Monge	arrays.

If	 	,

suppose	 	,

since	 	,

therefore	 	;

suppose	 	,

since	 	,

therefore	 	.

Problems
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b.	The	following	array	is	not	Monge.	Change	one	element	in	order	to	make	it	Monge.
(Hint:	Use	part	(a).)

c.	Let	 	be	the	index	of	the	column	containing	the	leftmost	minimum	element	of	row

	.	Prove	that	 	for	any	 	Monge	array.

Let	 	and	 	be	the	index	of	leftmost	minimal	elements	on	row	 	and	 	,	suppose	 	and

	.

	,

	,

	,

the	inequality	is	satisfied	only	when	 	,	therefore	 	.

d.	Here	is	a	description	of	a	divide-and-conquer	algorithm	that	computes	the	leftmost
minimum	element	in	each	row	of	an	 	Monge	array	 	:

Construct	a	submatrix	 	of	 	consisting	of	the	even-numbered	rows	of	 	.
Recursively	determine	the	leftmost	minimum	for	each	row	of	 	.	Then	compute
the	leftmost	minimum	in	the	odd-numbered	rows	of	 	.

Explain	how	to	compute	the	leftmost	minimum	in	the	odd-numbered	rows	of	 	(given

that	the	leftmost	minimum	of	the	even-numbered	rows	is	known)	in	 	time.

Search	in	the	interval	 	.
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e.	Write	the	recurrence	describing	the	running	time	of	the	algorithm	described	in	part

(d).	Show	that	its	solution	is	 	.

def	get_min_index(arr):

				def	get_min_index_rec(idx):

								if	len(idx)	==	1:

												min_idx	=	0

												for	j	in	range(1,	len(arr[0])):

																if	arr[idx[0]][j]	<	arr[idx[0]][min_idx]:

																				min_idx	=	j

												return	[min_idx]

								sub_idx	=	[idx[i]	for	i	in	range(len(idx))	if	i	%	2	==	0]

								sub_min_idx	=	get_min_index_rec(sub_idx)

								sub_min_idx.append(len(arr[0])	-	1)

								min_idx	=	[sub_min_idx[i//2]	for	i	in	range(len(idx))]

								for	i	in	range(1,	len(idx),	2):

												for	j	in	range(sub_min_idx[i//2]	+	1,	sub_min_idx[i//2	+	1]	+	1):

																if	arr[idx[i]][j]	<	arr[idx[i]][min_idx[i]]:

																				min_idx[i]	=	j

								return	min_idx

				return	get_min_index_rec([i	for	i	in	range(len(arr))])

Problems
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5	Probabilistic	Analysis	and	Randomized
Algorithms

5.1	The	hiring	problem
5.2	Indicator	random	variables
5.3	Randomized	algorithms
5.4	Probabilistic	analysis	and	further	uses	of	indicator	random	variables
Problems

5	Probabilistic	Analysis	and	Randomized	Algorithms
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5.1	The	hiring	problem

5.1-1

Show	that	the	assumption	that	we	are	always	able	to	determine	which	candidate	is
best,	in	line	4	of	procedure	HIRE-ASSISTANT,	implies	that	we	know	a	total	order	on	the
ranks	of	the	candidates.

Transitive

5.2-2	

Describe	an	implementation	of	the	procedure	RANDOM	 	that	only	makes	calls	to

RANDOM	 	.	What	is	the	expected	running	time	of	your	procedure,	as	a	function
of	 	and	 	?

Divide	 	into	 	and	 	,	if	RANDOM	 	gives	0	then	we	choose

	and	repeat	the	step	until	there	is	only	one	element	left.	The	expected	running	time

is	 	.

import	random

def	random_interval(a,	b):

				while	a	<	b:

								if	random.randint(0,	1)	==	0:

												b	=	(a	+	b)	//	2

								else:

												a	=	(a	+	b)	//	2	+	1

				return	a

5.2-3	

Suppose	that	you	want	to	output	 	with	probability	 	and	 	with	probability	 	.	At
your	disposal	is	a	procedure	BIASED-RANDOM,	that	outputs	either	 	or	 	.	It	outputs	

with	some	probability	 	and	 	with	probability	 	,	where	 	,	but	you	do
not	know	what	 	is.	Give	an	algorithm	that	uses	BIASED-RANDOM	as	a	subroutine,

and	returns	an	unbiased	answer,	returning	 	with	probability	 	and	 	with	probability

	.	What	is	the	expected	running	time	of	your	algorithm	as	a	function	of	 	?

5.1	The	hiring	problem
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The	probabilities	of	generating	(0,	1)	and	(1,	0)	with	BIASED-RANDOM	is	the	same.	We	can
generate	two	numbers	with	BIASED-RANDOM,	and	if	they	are	different,	we	can	return	the
first	number,	otherwise	we	should	regenerate	the	two	numbers.	Since	the	probability	of

generating	two	different	number	is	 	,	thus	the	expectation	of	generation	times	is

	.

import	random

def	biased_random():

				if	random.random()	<	0.1:

								return	0

				return	1

def	unbiased_random():

				while	True:

								a	=	biased_random()

								b	=	biased_random()

								if	a	!=	b:

												return	a

5.1	The	hiring	problem
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5.2	Indicator	random	variables

5.2-1

In	HIRE-ASSISTANT,	assuming	that	the	candidates	are	presented	in	a	random	order,
what	is	the	probability	that	you	hire	exactly	one	time?	What	is	the	probability	that	you
hire	exactly	 	times?

Extractly	one	time

The	best	candidate	comes	first,	which	is	 	.

Extractly	 	times

The	candidates	presented	in	ascending	order,	which	is	 	.

5.2-2

In	HIRE-ASSISTANT,	assuming	that	the	candidates	are	presented	in	a	random	order,
what	is	the	probability	that	you	hire	exactly	twice?

Suppose	the	first	candidate	is	of	rank	 	,	followed	by	some	candidates	with	rank	less	than	
,	then	followed	the	candidate	with	rank	 	.

5.2-3

Use	indicator	random	variables	to	compute	the	expected	value	of	the	sum	of	 	dice.

5.2	Indicator	random	variables
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5.2-4

Use	indicator	random	variables	to	solve	the	following	problem,	which	is	known	as	the
hat-check	problem.	Each	of	 	customers	gives	a	hat	to	a	hat-check	person	at	a
restaurant.	The	hat-check	person	gives	the	hats	back	to	the	customers	in	a	random
order.	What	is	the	expected	number	of	customers	who	get	back	their	own	hat?

The	probability	of	one	customer	get	his/her	hat	back	is	 	,	therefore	the	expectation	is

	.

5.2-5

Let	 	be	an	array	of	 	distinct	numbers.	If	 	and	 	,	then	the

pair	 	is	called	an	inversion	of	 	.	(See	Problem	2-4	for	more	on	inversions.)

Suppose	that	the	elements	of	 	form	a	uniform	random	permutation	of	 	.
Use	indicator	random	variables	to	compute	the	expected	number	of	inversions.

Suppose	 	,

5.2	Indicator	random	variables
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5.3	Randomized	algorithms

5.3-1

Professor	Marceau	objects	to	the	loop	invariant	used	in	the	proof	of	Lemma	5.5.	He
questions	whether	it	is	true	prior	to	the	first	iteration.	He	reasons	that	we	could	just	as
easily	declare	that	an	empty	subarray	contains	no	0-permutations.	Therefore,	the
probability	that	an	empty	subarray	contains	a	0-permutation	should	be	0,	thus
invalidating	the	loop	invariant	prior	to	the	first	iteration.	Rewrite	the	procedure
RANDOMIZE-IN-PLACE	so	that	its	associated	loop	invariant	applies	to	a	nonempty
subarray	prior	to	the	first	iteration,	and	modify	the	proof	of	Lemma	5.5	for	your
procedure.

5.3-2

Professor	Kelp	decides	to	write	a	procedure	that	produces	at	random	any	permutation
besides	the	identity	permutation.	He	proposes	the	following	procedure:

PERMUTE-WITHOUT-IDENTITY(A)

1	n	=	A.length

2	for	i	=	1	to	n	-	1

3					swap	A[i]	with	A[RANDOM(i	+	1,	n)]

Does	this	code	do	what	Professor	Kelp	intends?

It's	not	uniform.

5.3-3

Suppose	that	instead	of	swapping	element	 	with	a	random	element	from	the

subarray	 	,	we	swapped	it	with	a	random	element	from	anywhere	in	the
array:

PERMUTE-WITH-ALL(A)

1	n	=	A.length

2	for	i	=	1	to	n

3					swap	A[i]	with	A[RANDOM(1,	n)]

Does	this	code	produce	a	uniform	random	permutation?	Why	or	why	not?

5.3	Randomized	algorithms
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No.	 	.

5.3-4

Professor	Armstrong	suggests	the	following	procedure	for	generating	a	uniform	random
permutation:

PERMUTE-BY-CYCLIC(A)

1	n	=	A.length

2	let	B[1..n]	be	a	new	array

3	offset	=	RANDOM(1,	n)

4	for	i	=	1	to	n

5					dest	=	i	+	offset

6					if	dest	>	n

7									dest	=	dest	-	n

8					B[dest]	=	A[i]

9	return	B

Show	that	each	element	 	has	a	 	probability	of	winding	up	in	any	particular
position	in	 	.	Then	show	that	Professor	Armstrong	is	mistaken	by	showing	that	the
resulting	permutation	is	not	uniformly	random.

5.3-5	

Prove	that	in	the	array	 	in	procedure	PERMUTE-BY-SORTING,	the	probability	that	all

elements	are	unique	is	at	least	 	.

5.3-6

Explain	how	to	implement	the	algorithm	PERMUTE-BY-SORTING	to	handle	the	case	in
which	two	or	more	priorities	are	identical.	That	is,	your	algorithm	should	produce	a
uniform	random	permutation,	even	if	two	or	more	priorities	are	identical.

5.3	Randomized	algorithms
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Regenerate.

5.3-7

Suppose	we	want	to	create	a	random	sample	of	the	set	 	,	that	is,	an

	-element	subset	 	,	where	 	,	such	that	each	 	-subset	is	equally	likely

to	be	created.	One	way	would	be	to	set	 	for	 	,	call
RANDOMIZE-IN-PLACE(	 	),	and	then	take	just	the	first	 	array	elements.	This
method	would	make	 	calls	to	the	RANDOM	procedure.	If	 	is	much	larger	than	 	,
we	can	create	a	random	sample	with	fewer	calls	to	RANDOM.	Show	that	the	following

recursive	procedure	returns	a	random	 	-subset	 	of	 	,	in	which
each	 	-subset	is	equally	likely,	while	making	only	 	calls	to	RANDOM:

RANDOM-SAMPLE(m,	n)

1	if	m	==	0

2					return	\varnothing;

3	else	S	=	RANDOM-SAMPLE(m	-	1,	n	-	1)

4					i	=	RANDOM(1,	n)

5					if	i	\in	S

6									S	=	S	\cup	{n}

7					else	S	=	S	\cup	{i}

8					return	S

For	 	,	the	subset	is	uniformly	sampled	with	probability	 	;

Suppose	RANDOM-SAMPLE	 	creates	an	uniform	subset,

for	RANDOM-SAMPLE	 	,	the	probability	of	choosing	 	is:

the	probability	of	 	 	is	choosed	is:

5.3	Randomized	algorithms
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5.4	Probabilistic	analysis	and	further	uses	of
indicator	random	variables

5.4-1

How	many	people	must	there	be	in	a	room	before	the	probability	that	someone	has	the

same	birthday	as	you	do	is	at	least	 	?	How	many	people	must	there	be	before	the

probability	that	at	least	two	people	have	a	birthday	on	July	4	is	greater	than	 	?

Thus	there	must	be	253	people.

There	must	be	613	people.

5.4-2

Suppose	that	we	toss	balls	into	 	bins	until	some	bin	contains	two	balls.	Each	toss	is
independent,	and	each	ball	is	equally	likely	to	end	up	in	any	bin.	What	is	the	expected
number	of	ball	tosses?

Same	as	the	birthday	paradox.

5.4-3	

For	the	analysis	of	the	birthday	paradox,	is	it	important	that	the	birthdays	be	mutually
independent,	or	is	pairwise	independence	sufficient?	Justify	your	answer.

	uses	the	pairwise	independence,	thus	it	is	sufficient	for	proving.

5.4-4	

5.4	Probabilistic	analysis	and	further	uses	of	indicator	random	variables
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How	many	people	should	be	invited	to	a	party	in	order	to	make	it	likely	that	there	are
three	people	with	the	same	birthday?

At	least	94	people.

5.4-5	

What	is	the	probability	that	a	 	-string	over	a	set	of	size	 	forms	a	 	-permutation?
How	does	this	question	relate	to	the	birthday	paradox?

Complementary	to	the	birthday	paradox.

5.4-6	

Suppose	that	 	balls	are	tossed	into	 	bins,	where	each	toss	is	independent	and	the
ball	is	equally	likely	to	end	up	in	any	bin.	What	is	the	expected	number	of	empty	bins?
What	is	the	expected	number	of	bins	with	exactly	one	ball?

the	expected	number	of	empty	bins

5.4	Probabilistic	analysis	and	further	uses	of	indicator	random	variables
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the	expected	number	of	bins	with	exactly	one	ball

5.4-7	

Sharpen	the	lower	bound	on	streak	length	by	showing	that	in	 	flips	of	a	fair	coin,	the

probability	is	less	than	 	that	no	streak	longer	than	 	consecutive
heads	occurs.

5.4	Probabilistic	analysis	and	further	uses	of	indicator	random	variables
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Problems

5-1	Probabilistic	counting

With	a	 	-bit	counter,	we	can	ordinarily	only	count	up	to	 	.	With	R.	Morris’s
probabilistic	counting,	we	can	count	up	to	a	much	larger	value	at	the	expense	of
some	loss	of	precision.

We	let	a	counter	value	of	 	represent	a	count	of	 	for	 	,	where
the	 	form	an	increasing	sequence	of	nonnegative	values.	We	assume	that	the	initial

value	of	the	counter	is	 	,	representing	a	count	of	 	.	The	INCREMENT
operation	works	on	a	counter	containing	the	value	 	in	a	probabilistic	manner.	If

	,	then	the	operation	reports	an	overflow	error.	Otherwise,	the

INCREMENT	operation	increases	the	counter	by	1	with	probability	 	,

and	it	leaves	the	counter	unchanged	with	probability	 	.

If	we	select	 	for	all	 	,	then	the	counter	is	an	ordinary	one.	More	interesting

situations	arise	if	we	select,	say,	 	for	 	or	 	(the	 	th	Fibonacci
number	-	see	Section	3.2).

For	this	problem,	assume	that	 	is	large	enough	that	the	probability	of	an	overflow
error	is	negligible.

a.	Show	that	the	expected	value	represented	by	the	counter	after	 	INCREMENT
operations	have	been	performed	is	exactly	 	.

b.	The	analysis	of	the	variance	of	the	count	represented	by	the	counter	depends	on	the

sequence	of	the	 	.	Let	us	consider	a	simple	case:	 	for	all	 	.
Estimate	the	variance	in	the	value	represented	by	the	register	after	 	INCREMENT
operations	have	been	performed.

Problems
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5-2	Searching	an	unsorted	array

This	problem	examines	three	algorithms	for	searching	for	a	value	 	in	an	unsorted
array	 	consisting	of	 	elements.

Consider	the	following	randomized	strategy:	pick	a	random	index	 	into	 	.	If

	,	then	we	terminate;	otherwise,	we	continue	the	search	by	picking	a	new
random	index	into	 	.	We	continue	picking	random	indices	into	 	until	we	find	an	index

	such	that	 	or	until	we	have	checked	every	element	of	 	.	Note	that	we	pick
from	the	whole	set	of	indices	each	time,	so	that	we	may	examine	a	given	element	more
than	once.

a.	Write	pseudocode	for	a	procedure	RANDOM-SEARCH	to	implement	the	strategy
above.	Be	sure	that	your	algorithm	terminates	when	all	indices	into	 	have	been
picked.

import	random

def	random_search(a,	x):

				n	=	len(a)

				searched	=	{}

				while	len(searched)	<	n:

								r	=	random.randint(0,	n	-	1)

								if	a[r]	==	x:

												return	r

								if	r	not	in	searched.keys():

												searched[r]	=	True

				return	-1

b.	Suppose	that	there	is	exactly	one	index	 	such	that	 	.	What	is	the	expected
number	of	indices	into	 	that	we	must	pick	before	we	find	 	and	RANDOM-SEARCH
terminates?

c.	Generalizing	your	solution	to	part	(b),	suppose	that	there	are	 	indices	 	such

that	 	.	What	is	the	expected	number	of	indices	into	 	that	we	must	pick
before	we	find	 	and	RANDOM-SEARCH	terminates?	Your	answer	should	be	a
function	of	 	and	 	.

Problems
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d.	Suppose	that	there	are	no	indices	 	such	that	 	.	What	is	the	expected
number	of	indices	into	 	that	we	must	pick	before	we	have	checked	all	elements	of	
and	RANDOM-SEARCH	terminates?

Same	as	section	5.4.2,	

Now	consider	a	deterministic	linear	search	algorithm,	which	we	refer	to	as
DETERMINISTIC-SEARCH.	Specifically,	the	algorithm	searches	 	for	 	in	order,

considering	 	until	either	it	finds	 	or	it	reaches
the	end	of	the	array.	Assume	that	all	possible	permutations	of	the	input	array	are
equally	likely.

e.	Suppose	that	there	is	exactly	one	index	 	such	that	 	.	What	is	the	average-
case	running	time	of	DETERMINISTIC-SEARCH?	What	is	the	worst-case	running	time
of	DETERMINISTIC_SERACH?

Average:	

Worst:	

f.	Generalizing	your	solution	to	part	(e),	suppose	that	there	are	 	indices	 	such

that	 	.	What	is	the	average-case	running	time	of	DETERMINISTIC-SEARCH?
What	is	the	worst-case	running	time	of	DETERMINISTIC-SEARCH?	Your	answer
should	be	a	function	of	 	and	 	.

Average:

Worst:	

g.	Suppose	that	there	are	no	indices	 	such	that	 	.	What	is	the	average-case
running	time	of	DETERMINISTIC-SEARCH?	What	is	the	worst-case	running	time	of
DETERMINISTIC-SEARCH?

Problems
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Average:	

Worst:	

Finally,	consider	a	randomized	algorithm	SCRAMBLE-SEARCH	that	works	by	first
randomly	permuting	the	input	array	and	then	running	the	deterministic	linear	search
given	above	on	the	resulting	permuted	array.

h.	Letting	 	be	the	number	of	indices	 	such	that	 	,	give	the	worst-case	and
expected	running	times	of	SCRAMBLE-SEARCH	for	the	cases	in	which	 	and

	.	Generalize	your	solution	to	handle	the	case	in	which	 	.

Same	as	DETERMINISTIC-SEARCH.

i.	Which	of	the	three	searching	algorithms	would	you	use?	Explain	your	answer.

DETERMINISTIC-SEARCH

Easy	to	implement

	memory

Guarantee	 	running	time

Problems
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6.1	Heaps

6.1-1

What	are	the	minimum	and	maximum	numbers	of	elements	in	a	heap	of	height	 	?

Minimum:	

Maximum:	

6.1-2

Show	that	an	 	-element	heap	has	height	 	.

6.1-3

Show	that	in	any	subtree	of	a	max-heap,	the	root	of	the	subtree	contains	the	largest
value	occurring	anywhere	in	that	subtree.

Transitivity	of	

6.1-4

Where	in	a	max-heap	might	the	smallest	element	reside,	assuming	that	all	elements
are	distinct?

The	leaves.

6.1-5

Is	an	array	that	is	in	sorted	order	a	min-heap?

Yes,	since	 	,	 	.

6.1-6

6.1	Heaps
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Is	the	array	with	values	 	a	max-heap?

No,	 	.

6.1-7

Show	that,	with	the	array	representation	for	storing	an	 	-element	heap,	the	leaves	are

the	nodes	indexed	by	 	.

6.1	Heaps
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6.2	Maintaining	the	heap	property

6.2-1

Using	Figure	6.2	as	a	model,	illustrate	the	operation	of	MAX-HEAPIFY	 	on	the

array	 	.

MAX-HEAPIFY	 	:	 	,	swap	 	and	 	.

6.2	Maintaining	the	heap	property
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MAX-HEAPIFY	 	:	 	,	swap	 	and	 	.

6.2	Maintaining	the	heap	property
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MAX-HEAPIFY	 	:	 	,	done.

6.2-2

Starting	with	the	procedure	MAX-HEAPIFY,	write	pseudocode	for	the	procedure	MIN-

HEAPIFY	 	,	which	performs	the	corresponding	manipulation	on	a	minheap.	How
does	the	running	time	of	MIN-HEAPIFY	compare	to	that	of	MAX-HEAPIFY?

6.2	Maintaining	the	heap	property
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def	parent(i):

				return	(i	-	1)	>>	1

def	left(i):

				return	(i	<<	1)	+	1

def	right(i):

				return	(i	<<	1)	+	2

def	min_heapify(a,	i):

				min_idx	=	i

				l,	r	=	left(i),	right(i)

				if	l	<	len(a)	and	a[l]	<	a[min_idx]:

								min_idx	=	l

				if	r	<	len(a)	and	a[r]	<	a[min_idx]:

								min_idx	=	r

				if	min_idx	!=	i:

								a[i],	a[min_idx]	=	a[min_idx],	a[i]

								min_heapify(a,	min_idx)

Running	time	is	the	same.

6.2-3

What	is	the	effect	of	calling	MAX-HEAPIFY	 	when	the	element	 	is	larger
than	its	children?

No	effect.

6.2-4

What	is	the	effect	of	calling	MAX-HEAPIFY	 	for	 	?

No	effect.

6.2-5

The	code	for	MAX-HEAPIFY	is	quite	efficient	in	terms	of	constant	factors,	except
possibly	for	the	recursive	call	in	line	10,	which	might	cause	some	compilers	to	produce
inefficient	code.	Write	an	efficient	MAX-HEAPIFY	that	uses	an	iterative	control	construct
(a	loop)	instead	of	recursion.

6.2	Maintaining	the	heap	property
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def	max_heapify(a,	i):

				while	True:

								max_idx	=	i

								l,	r	=	left(i),	right(i)

								if	l	<	len(a)	and	a[l]	>	a[max_idx]:

												max_idx	=	l

								if	r	<	len(a)	and	a[r]	>	a[max_idx]:

												max_idx	=	r

								if	max_idx	==	i:

												break

								a[i],	a[max_idx]	=	a[max_idx],	a[i]

								i	=	max_idx

6.2-6

Show	that	the	worst-case	running	time	of	MAX-HEAPIFY	on	a	heap	of	size	 	is

	.	(Hint:	For	a	heap	with	 	nodes,	give	node	values	that	cause	MAX-HEAPIFY
to	be	called	recursively	at	every	node	on	a	simple	path	from	the	root	down	to	a	leaf.)

The	height	is	 	.

6.2	Maintaining	the	heap	property
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6.3	Building	a	heap

6.3-1

Using	Figure	6.3	as	a	model,	illustrate	the	operation	of	BUILD-MAX-HEAP	on	the	array

	.

MAX-HEAPIFY	 	:	

6.3	Building	a	heap
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MAX-HEAPIFY	 	:	

6.3	Building	a	heap

98



MAX-HEAPIFY	 	:	

6.3	Building	a	heap
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MAX-HEAPIFY	 	:	

6.3	Building	a	heap
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6.3-2

Why	do	we	want	the	loop	index	 	in	line	2	of	BUILD-MAX-HEAP	to	decrease	from

	to	 	rather	than	increase	from	 	to	 	?

To	ensure	the	subtrees	are	heaps.

6.3-3

Show	that	there	are	at	most	 	nodes	of	height	 	in	any	 	-element	heap.

6.3	Building	a	heap
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6.4	The	heapsort	algorithm

6.4-1

Using	Figure	6.4	as	a	model,	illustrate	the	operation	of	HEAPSORT	on	the	array

	.

BUILD_MAX_HEAP	 	:	

HEAPSORT	 	:

6.4	The	heapsort	algorithm
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6.4-2

Argue	the	correctness	of	HEAPSORT	using	the	following	loop	invariant:

At	the	start	of	each	iteration	of	the	for	loop	of	lines	2–5,	the	subarray	 	is

a	max-heap	containing	the	 	smallest	elements	of	 	,	and	the	subarray

	contains	the	 	largest	elements	of	 	,	sorted.

In	each	iteration	we	move	the	largest	element	to	the	sorted	array.

6.4-3

What	is	the	running	time	of	HEAPSORT	on	an	array	 	of	length	 	that	is	already	sorted	in
increasing	order?	What	about	decreasing	order?

Both	are	 	since	there	are	 	calls	to	MAX-HEAPIFY.

6.4-4

6.4	The	heapsort	algorithm
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Show	that	the	worst-case	running	time	of	HEAPSORT	is	 	.

BUILD-HEAD	is	 	and	MAX-HEAPIFY	is	 	.

6.4-5	

Show	that	when	all	elements	are	distinct,	the	best-case	running	time	of	HEAPSORT	is

	.
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6.5	Priority	queues

6.5-1

Illustrate	the	operation	of	HEAP-EXTRACT-MAX	on	the	heap

	.

Return	15	and	 	,

MAX-HEAPIFY	 	:	 	.

6.5	Priority	queues
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6.5-2

Illustrate	the	operation	of	MAX-HEAP-INSERT	 	on	the	heap

	.

Insert:	 	.
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Increase:	
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Heapify:
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6.5-3

Write	pseudocode	for	the	procedures	HEAP-MINIMUM,	HEAP-EXTRACT-MIN,	HEAP-
DECREASE-KEY,	and	MIN-HEAP-INSERT	that	implement	a	min-priority	queue	with	a
min-heap.

6.5	Priority	queues
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def	heap_minimum(a):

				assert(len(a)	>	0)

				return	a[0]

def	heap_extract_min(a):

				assert(len(a)	>	0)

				val	=	a[0]

				a[0]	=	a[-1]

				del	a[-1]

				min_heapify(a,	0)

				return	val

def	heap_decrease_key(a,	i,	key):

				assert(key	<=	a[i])

				a[i]	=	key

				while	i	>	0	and	a[i]	<	a[parent(i)]:

								a[i],	a[parent(i)]	=	a[parent(i)],	a[i]

								i	=	parent(i)

def	min_heap_insert(a,	key):

				a.append(1e100)

				heap_decrease_key(a,	len(a)	-	1,	key)

6.5-4

Why	do	we	bother	setting	the	key	of	the	inserted	node	to	 	in	line	2	of	MAXHEAP-
INSERT	when	the	next	thing	we	do	is	increase	its	key	to	the	desired	value?

To	make	 	.

6.5-5

Argue	the	correctness	of	HEAP-INCREASE-KEY	using	the	following	loop	invariant:

At	the	start	of	each	iteration	of	the	while	loop	of	lines	4–6,	the	subarray

	satisfies	the	max-heap	property,	except	that	there	may

be	one	violation:	 	may	be	larger	than	 	.

You	may	assume	that	the	subarray	 	satisfies	the	max-heap
property	at	the	time	HEAP-INCREASE-KEY	is	called.

Correct.

6.5	Priority	queues
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6.5-6

Each	exchange	operation	on	line	5	of	HEAP-INCREASE-KEY	typically	requires	three
assignments.	Show	how	to	use	the	idea	of	the	inner	loop	of	INSERTION-SORT	to
reduce	the	three	assignments	down	to	just	one	assignment.

def	heap_increase_key(a,	i,	key):

				assert(key	>=	a[i])

				while	i	>	0	and	key	>	a[parent(i)]:

								a[i]	=	a[parent(i)]

								i	=	parent(i)

				a[i]	=	key

6.5-7

Show	how	to	implement	a	first-in,	first-out	queue	with	a	priority	queue.	Show	how	to
implement	a	stack	with	a	priority	queue.

class	Queue:

				def	__init__(self):

								self.heap	=	[]

								self.inc	=	0

				def	push(self,	val):

								self.inc	+=	1

								min_heap_insert(self.heap,	(self.inc,	val))

				def	front(self):

								return	heap_minimum(self.heap)

				def	pop(self):

								return	heap_extract_min(self.heap)

class	Stack:

				def	__init__(self):

								self.heap	=	[]

								self.inc	=	0

				def	push(self,	val):

								self.inc	+=	1

								max_heap_insert(self.heap,	(self.inc,	val))

				def	top(self):

								return	heap_maximum(self.heap)

				def	pop(self):

								return	heap_extract_max(self.heap)

6.5	Priority	queues
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6.5-8

The	operation	HEAP-DELETE	 	deletes	the	item	in	node	 	from	heap	 	.	Give	an

implementation	of	HEAP-DELETE	that	runs	in	 	time	for	an	n-element	max-
heap.

def	heap_delete(a,	i):

				if	i	==	len(a)	-	1:

								del	a[-1]

				else:

								a[i]	=	a[-1]

								del	a[-1]

								max_heapify(a,	i)

								heap_increase_key(a,	i,	a[i])

6.5-9

Give	an	 	-time	algorithm	to	merge	 	sorted	lists	into	one	sorted	list,	where	
is	the	total	number	of	elements	in	all	the	input	lists.	(Hint:	Use	a	minheap	for	 	-way
merging.)

def	merge_lists(lists):

				k	=	len(lists)

				heap	=	[]

				for	i	in	range(k):

								if	len(lists[i])	>	0:

												min_heap_insert(heap,	(lists[i][0],	i))

				idx	=	[0	for	lst	in	lists]

				a	=	[]

				while	len(heap)	>	0:

								val,	i	=	heap_extract_min(heap)

								a.append(val)

								idx[i]	+=	1

								if	idx[i]	<	len(lists[i]):

												min_heap_insert(heap,	(lists[i][idx[i]],	i))

				return	a

6.5	Priority	queues
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Problems

6-1	Building	a	heap	using	insertion

We	can	build	a	heap	by	repeatedly	calling	MAX-HEAP-INSERT	to	insert	the	elements
into	the	heap.	Consider	the	following	variation	on	the	BUILD-MAX-HEAP	procedure:

BUILD-MAX-HEAP'(A)

1	A.heap-size	=	1

2	for	i	=	2	to	A.length

3					MAX-HEAP-INSERT(A,	A[i])

a.	Do	the	procedures	BUILD-MAX-HEAP	and	BUILD-MAX-HEAP'	always	create	the
same	heap	when	run	on	the	same	input	array?	Prove	that	they	do,	or	provide	a
counterexample.

No.

For	 	,

BUILD-MAX-HEAP:	 	;
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BUILD-MAX-HEAP':	 	.
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b.	Show	that	in	the	worst	case,	BUILD-MAX-HEAP'	requires	 	time	to	build
an	n-element	heap.

MAX-HEAP-INSERT	is	 	,	thus	BUILD-MAX-HEAP'	is	 	.

6-2	Analysis	of	 	-ary	heaps

A	 	-ary	heap	is	like	a	binary	heap,	but	(with	one	possible	exception)	non-leaf	nodes
have	 	children	instead	of	 	children.

a.	How	would	you	represent	a	 	-ary	heap	in	an	array?

If	the	index	of	the	array	begins	with	0,	then	the	 	th	children	of	node	 	is	 	.	The

parent	of	node	 	is	 	.

Thus	if	the	index	begins	with	1,	the	 	th	children	is	 	,	the	parent	is

	.

Problems

123



b.	What	is	the	height	of	a	 	-ary	heap	of	 	elements	in	terms	of	 	and	 	?

c.	Give	an	efficient	implementation	of	EXTRACT-MAX	in	a	 	-ary	max-heap.	Analyze	its
running	time	in	terms	of	 	and	 	.

def	parent(d,	i):

				return	(i	-	1)	/	d

def	child(d,	i,	k):

				return	(i	*	d)	+	k

def	max_heapify(d,	a,	i):

				max_idx	=	i

				for	k	in	range(1,	d	+	1):

								c	=	child(d,	i,	k)

								if	c	<	len(a)	and	a[c]	>	a[max_idx]:

												max_idx	=	c

				if	max_idx	!=	i:

								a[i],	a[max_idx]	=	a[max_idx],	a[i]

								max_heapify(d,	a,	max_idx)

def	extract_max(d,	a):

				assert(len(a)	>	0)

				val	=	a[0]

				a[0]	=	a[-1]

				del	a[-1]

				max_heapify(d,	a,	0)

				return	val

d.	Give	an	efficient	implementation	of	INSERT	in	a	 	-ary	max-heap.	Analyze	its
running	time	in	terms	of	 	and	 	.
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def	increase_key(d,	a,	i,	key):

				assert(key	>=	a[i])

				while	i	>	0	and	key	>	a[parent(d,	i)]:

								a[i]	=	a[parent(d,	i)]

								i	=	parent(d,	i)

				a[i]	=	key

def	insert(d,	a,	key):

				a.append(-1e100)

				increase_key(d,	a,	len(a)	-	1,	key)

e.	Give	an	efficient	implementation	of	INCREASE-KEY	 	,	which	flags	an	error

if	 	,	but	otherwise	sets	 	and	then	updates	the	 	-ary	maxheap
structure	appropriately.	Analyze	its	running	time	in	terms	of	 	and	 	.

def	increase_key(d,	a,	i,	key):

				assert(key	>=	a[i])

				while	i	>	0	and	key	>	a[parent(d,	i)]:

								a[i]	=	a[parent(d,	i)]

								i	=	parent(d,	i)

				a[i]	=	key

6-3	Young	tableaus

An	 	Young	tableau	is	an	 	matrix	such	that	the	entries	of	each	row	are	in
sorted	order	from	left	to	right	and	the	entries	of	each	column	are	in	sorted	order	from
top	to	bottom.	Some	of	the	entries	of	a	Young	tableau	may	be	 	,	which	we	treat	as
nonexistent	elements.	Thus,	a	Young	tableau	can	be	used	to	hold	 	finite
numbers.

a.	Draw	a	 	Young	tableau	containing	the	elements

	.
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b.	Argue	that	an	 	Young	tableau	 	is	empty	if	 	.	Argue	that	 	is

full	(contains	 	elements)	if	 	.

Transitive.

c.	Give	an	algorithm	to	implement	EXTRACT-MIN	on	a	nonempty	 	Young

tableau	that	runs	in	 	time.	Your	algorithm	should	use	a	recursive	subroutine

that	solves	an	 	problem	by	recursively	solving	either	an	 	or	an

	subproblem.	Define	 	,	where	 	,	to	be	the	maximum
running	time	of	EXTRACT-MIN	on	any	 	Young	tableau.	Give	and	solve	a

recurrence	for	 	that	yields	the	 	time	bound.

def	extract_min(a):

				m,	n	=	len(a),	len(a[0])

				val	=	a[0][0]

				a[0][0]	=	1e8

				def	maintain(i,	j):

								min_i,	min_j	=	i,	j

								if	i	+	1	<	m	and	a[i	+	1][j]	<	a[min_i][min_j]:

												min_i,	min_j	=	i	+	1,	j

								if	j	+	1	<	n	and	a[i][j	+	1]	<	a[min_i][min_j]:

												min_i,	min_j	=	i,	j	+	1

								if	min_i	!=	i	or	min_j	!=	j:

												a[i][j],	a[min_i][min_j]	=	a[min_i][min_j],	a[i][j]

												maintain(min_i,	min_j)

				maintain(0,	0)

				return	val

d.	Show	how	to	insert	a	new	element	into	a	nonfull	 	Young	tableau	in

	time.
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def	insert(a,	val):

				m,	n	=	len(a),	len(a[0])

				a[m	-	1][n	-	1]	=	val

				def	maintain(i,	j):

								max_i,	max_j	=	i,	j

								if	i	-	1	>=	0	and	a[i	-	1][j]	>	a[max_i][max_j]:

												max_i,	max_j	=	i	-	1,	j

								if	j	-	1	>=	0	and	a[i][j	-	1]	>	a[max_i][max_j]:

												max_i,	max_j	=	i,	j	-	1

								if	max_i	!=	i	or	max_j	!=	j:

												a[i][j],	a[max_i][max_j]	=	a[max_i][max_j],	a[i][j]

												maintain(max_i,	max_j)

				maintain(m	-	1,	n	-	1)

e.	Using	no	other	sorting	method	as	a	subroutine,	show	how	to	use	an	 	Young

tableau	to	sort	 	numbers	in	 	time.

def	sort_elements(a):

				m	=	len(a)

				n	=	int(math.ceil(math.sqrt(m)))

				y	=	[[1e8	for	_	in	range(n)]	for	_	in	range(n)]

				for	val	in	a:

								insert(y,	val)

				a	=	[]

				for	_	in	range(m):

								a.append(extract_min(y))

				return	a

INSERT	and	EXTRACT-MIN	are	 	,	there	are	 	elements,	therefore	the	result	is

	.

f.	Give	an	 	-time	algorithm	to	determine	whether	a	given	number	is	stored
in	a	given	 	Young	tableau.

Problems

127



def	find(a,	val):

				m,	n	=	len(a),	len(a[0])

				i,	j	=	0,	n	-	1

				while	i	<	m	and	j	>=	0:

								if	a[i][j]	==	val:

												return	i,	j

								elif	a[i][j]	>	val:

												j	-=	1

								else:

												i	+=	1

				return	-1,	-1
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7	Quicksort
7.1	Description	of	quicksort
7.2	Performance	of	quicksort
7.3	A	randomized	version	of	quicksort
7.4	Analysis	of	quicksort
Problems

7	Quicksort

129



7.1	Description	of	quicksort

7.1-1

Using	Figure	7.1	as	a	model,	illustrate	the	operation	of	PARTITION	on	the	array

	.
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7.1-2

What	value	of	 	does	PARTITION	return	when	all	elements	in	the	array	

have	the	same	value?	Modify	PARTITION	so	that	 	when	all

elements	in	the	array	 	have	the	same	value.

PARTITION	returns	 	.

def	partition(a,	p,	r):

				x	=	a[r	-	1]

				i	=	p	-	1

				for	k	in	range(p,	r	-	1):

								if	a[k]	<	x:

												i	+=	1

												a[i],	a[k]	=	a[k],	a[i]

				i	+=	1

				a[i],	a[r	-	1]	=	a[r	-	1],	a[i]

				j	=	i

				for	k	in	range(i	+	1,	r):

								if	a[k]	==	x:

												j	+=	1

												a[j],	a[k]	=	a[k],	a[j]

								k	-=	1

				return	(i	+	j)	//	2

7.1-3

Give	a	brief	argument	that	the	running	time	of	PARTITION	on	a	subarray	of	size	 	is

	.

Only	one	loop.

7.1-4

How	would	you	modify	QUICKSORT	to	sort	into	nonincreasing	order?

7.1	Description	of	quicksort
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def	partition(a,	p,	r):

				x	=	a[r	-	1]

				i	=	p	-	1

				for	j	in	range(p,	r	-	1):

								if	a[j]	>=	x:

												i	+=	1

												a[i],	a[j]	=	a[j],	a[i]

				i	+=	1

				a[i],	a[r	-	1]	=	a[r	-	1],	a[i]

				return	i

def	quicksort(a,	p,	r):

				if	p	<	r	-	1:

								q	=	partition(a,	p,	r)

								quicksort(a,	p,	q)

								quicksort(a,	q	+	1,	r)

7.1	Description	of	quicksort
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7.2	Performance	of	quicksort

7.2-1

Use	the	substitution	method	to	prove	that	the	recurrence

	has	the	solution	 	,	as	claimed	at	the
beginning	of	Section	7.2.

Suppose	 	,

7.2-2

What	is	the	running	time	of	QUICKSORT	when	all	elements	of	array	A	have	the	same
value?

7.2-3

Show	that	the	running	time	of	QUICKSORT	is	 	when	the	array	 	contains
distinct	elements	and	is	sorted	in	decreasing	order.

7.2-4

7.2	Performance	of	quicksort
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Banks	often	record	transactions	on	an	account	in	order	of	the	times	of	the	transactions,
but	many	people	like	to	receive	their	bank	statements	with	checks	listed	in	order	by
check	number.	People	usually	write	checks	in	order	by	check	number,	and	merchants
usually	cash	them	with	reasonable	dispatch.	The	problem	of	converting	time-of-
transaction	ordering	to	check-number	ordering	is	therefore	the	problem	of	sorting
almost-sorted	input.	Argue	that	the	procedure	INSERTION-SORT	would	tend	to	beat
the	procedure	QUICKSORT	on	this	problem.

INSERTION-SORT	is	 	while	 	is	

7.2-5

Suppose	that	the	splits	at	every	level	of	quicksort	are	in	the	proportion	 	to	 	,

where	 	is	a	constant.	Show	that	the	minimum	depth	of	a	leaf	in	the

recursion	tree	is	approximately	 	and	the	maximum	depth	is	approximately

	.	(Don't	worry	about	integer	round-off.)

Let	 	be	the	minimum	depth,

Let	 	be	the	maximum	depth,

7.2-6	

Argue	that	for	any	constant	 	,	the	probability	is	approximately	 	,

that	on	a	random	input	array,	PARTITION	produces	a	split	more	balanced	than	
to	 	.

7.2	Performance	of	quicksort
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In	order	to	make	a	partition	which	is	less	balanced,	the	pivot	should	belong	to	either	the
largest	 	elements	or	the	smallest	 	elements.	Thus	a	better	partition	is	approximately

	.

7.2	Performance	of	quicksort
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7.3	A	randomized	version	of	quicksort

7.3-1

Why	do	we	analyze	the	expected	running	time	of	a	randomized	algorithm	and	not	its
worst-case	running	time?

Even	with	the	same	input,	the	running	time	will	be	different.

7.3-2

When	RANDOMIZED-QUICKSORT	runs,	how	many	calls	are	made	to	the	random-
number	generator	RANDOM	in	the	worst	case?	How	about	in	the	best	case?	Give	your
answer	in	terms	of	 	-notation.

Worst:	

Best:	

7.3	A	randomized	version	of	quicksort
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7.4	Analysis	of	quicksort

7.4-1

Show	that	in	the	recurrence

	,

	.

Suppose	 	,

7.4-2

Show	that	quicksort’s	best-case	running	time	is	 	.

	,	therefore	it	is	 	.

7.4-3

Show	that	the	expression	 	achieves	a	maximum	over

	when	 	or	 	.

Based	on	the	first	order	derivation	on	 	,	we	know	the	minimum	is	achieved	when

	,	and	the	function	increases	with	the	same	speed	when	 	is	away	from

	in	two	directions.	Thus	the	maximum	is	on	the	bound	of	the	the	variable,	 	and

	.

7.4	Analysis	of	quicksort
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7.4-4

Show	that	RANDOMIZED-QUICKSORT’s	expected	running	time	is	 	.

7.4-5

We	can	improve	the	running	time	of	quicksort	in	practice	by	taking	advantage	of	the	fast
running	time	of	insertion	sort	when	its	input	is	"nearly"	sorted.	Upon	calling	quicksort	on
a	subarray	with	fewer	than	 	elements,	let	it	simply	return	without	sorting	the	subarray.
After	the	top-level	call	to	quicksort	returns,	run	insertion	sort	on	the	entire	array	to	finish

the	sorting	process.	Argue	that	this	sorting	algorithm	runs	in	
expected	time.	How	should	we	pick	 	,	both	in	theory	and	in	practice?

QUICK-SORT:	layer	number	is	 	,	therefore	it	is	 	.

INSERTION-SORT:	each	subarray	is	 	,	the	number	of	subarrays	is	 	,

therefore	it	is	 	.

Therefore	this	sorting	algorithm	runs	in	 	.

In	practice	we	should	use	profiling.

7.4-6	

7.4	Analysis	of	quicksort
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Consider	modifying	the	PARTITION	procedure	by	randomly	picking	three	elements	from
array	 	and	partitioning	about	their	median	(the	middle	value	of	the	three	elements).

Approximate	the	probability	of	getting	at	worst	an	 	-to-	 	split,	as	a	function	of
	in	the	range	 	.

The	worst	case	happens	when	at	least	two	of	the	chose	elements	are	in	the	 	smallest	or
largest	set,	thus	the	probability	of	a	worse	case	is

The	complementary	is	 	.

7.4	Analysis	of	quicksort
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Problems

7-1	Hoare	partition	correctness

The	version	of	PARTITION	given	in	this	chapter	is	not	the	original	partitioning	algorithm.
Here	is	the	original	partition	algorithm,	which	is	due	to	C.	A.	R.	Hoare:

HOARE-PARTITION(A,	p,	r)

1		x	=	A[p]

2		i	=	p	-	1

3		j	=	r	+	1

4		while	TRUE

5						repeat

6										j	=	j	-	1

7						until	A[j]	<=	x

8						repeat

9										i	=	i	+	1

10					until	A[i]	>=	x

11					if	i	<	j

12									exchange	A[i]	with	A[j]

13					else	return	j

a.	Demonstrate	the	operation	of	HOARE-PARTITION	on	the	array

	,	showing	the	values	of	the	array	and
auxiliary	values	after	each	iteration	of	the	while	loop	in	lines	4-13.
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The	next	three	questions	ask	you	to	give	a	careful	argument	that	the	procedure

HOARE-PARTITION	is	correct.	Assuming	that	the	subarray	 	contains	at
least	two	elements,	prove	the	following:

b.	The	indices	 	and	 	are	such	that	we	never	access	an	element	of	 	outside	the

subarray	 	.

In	the	first	loop,	 	will	terminate	at	the	pivot,	the	smallest	 	would	be	the	pivot,	therefore	no

invalid	position	is	accessed.	In	the	next	loops,	 	will	finally	terminate	at	last	 	and	 	will	finally

terminate	at	last	 	,	and	since	 	and	 	after	the	first	loop,	there	is	no	change	to

access	an	element	outside	 	.

c.	When	HOARE-PARTITION	terminates,	it	returns	a	value	 	such	that	 	.

In	b,	we	know	 	,	the	largest	 	in	the	first	loop	is	 	,	while	 	will	be	at	 	,	if	 	,

then	 	,	the	loop	will	not	terminate.	In	the	second	loop,	 	has	to	move	at	least	one	step,

therefore	 	must	be	less	than	 	.

d.	Every	element	of	 	is	less	than	or	equal	to	every	element	of

	when	HOARE-PARTITION	terminates.

Small	values	are	moved	to	the	front	and	large	values	are	moved	to	the	end.

The	PARTITION	procedure	in	Section	7.1	separates	the	pivot	value	(originally	in	 	)
from	the	two	partitions	it	forms.	The	HOARE-PARTITION	procedure,	on	the	other	hand,

always	places	the	pivot	value	(originally	in	 	)	into	one	of	the	two	partitions

	and	 	.	Since	 	,	this	split	is	always	nontrivial.

e.	Rewrite	the	QUICKSORT	procedure	to	use	HOARE-PARTITION.
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def	hoare_partition(a,	p,	r):

				x	=	a[p]

				i	=	p	-	1

				j	=	r

				while	True:

								while	True:

												j	-=	1

												if	a[j]	<=	x:

																break

								while	True:

												i	+=	1

												if	a[i]	>=	x:

																break

								if	i	<	j:

												a[i],	a[j]	=	a[j],	a[i]

								else:

												return	j

def	quicksort(a,	p,	r):

				if	p	<	r	-	1:

								q	=	hoare_partition(a,	p,	r)

								quicksort(a,	p,	q	+	1)

								quicksort(a,	q	+	1,	r)

7-2	Quicksort	with	equal	element	values

The	analysis	of	the	expected	running	time	of	randomized	quicksort	in	Section	7.4.2
assumes	that	all	element	values	are	distinct.	In	this	problem,	we	examine	what
happens	when	they	are	not.

a.	Suppose	that	all	element	values	are	equal.	What	would	be	randomized	quicksort’s
running	time	in	this	case?
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b.	The	PARTITION	procedure	returns	an	index	 	such	that	each	element	of

	is	less	than	or	equal	to	 	and	each	element	of	 	is

greater	than	 	.	Modify	the	PARTITION	procedure	to	produce	a	procedure

PARTITION'(A,p,r),	which	permutes	the	elements	of	 	and	returns	two	indices

	and	 	,	where	 	,	such	that

all	elements	of	 	are	equal,

each	element	of	 	is	less	than	 	,	and

each	element	of	 	is	greater	than	 	.

Like	PARTITION,	your	PARTITION'	procedure	should	take	 	time.

def	partition(a,	p,	r):

				x	=	a[r	-	1]

				i	=	p	-	1

				for	k	in	range(p,	r	-	1):

								if	a[k]	<	x:

												i	+=	1

												a[i],	a[k]	=	a[k],	a[i]

				i	+=	1

				a[i],	a[r	-	1]	=	a[r	-	1],	a[i]

				j	=	i

				for	k	in	range(i	+	1,	r):

								if	a[k]	==	x:

												j	+=	1

												a[j],	a[k]	=	a[k],	a[j]

								k	-=	1

				return	i,	j

c.	Modify	the	RANDOMIZED-QUICKSORT	procedure	to	call	PARTITION0,	and	name
the	new	procedure	RANDOMIZED-QUICKSORT'.	Then	modify	the	QUICKSORT

procedure	to	produce	a	procedure	QUICKSORT'	 	that	calls	RANDOMIZED-
PARTITION'	and	recurses	only	on	partitions	of	elements	not	known	to	be	equal	to	each
other.
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def	randomized_partition(a,	p,	r):

				x	=	random.randint(p,	r	-	1)

				a[x],	a[r	-	1]	=	a[r	-	1],	a[x]

				return	partition(a,	p,	r)

def	quicksort(a,	p,	r):

				if	p	<	r	-	1:

								q,	t	=	randomized_partition(a,	p,	r)

								quicksort(a,	p,	q)

								quicksort(a,	t	+	1,	r)

d.	Using	QUICKSORT',	how	would	you	adjust	the	analysis	in	Section	7.4.2	to	avoid	the
assumption	that	all	elements	are	distinct?

7-3	Alternative	quicksort	analysis

An	alternative	analysis	of	the	running	time	of	randomized	quicksort	focuses	on	the
expected	running	time	of	each	individual	recursive	call	to	RANDOMIZED-QUICKSORT,
rather	than	on	the	number	of	comparisons	performed.

a.	Argue	that,	given	an	array	of	size	 	,	the	probability	that	any	particular	element	is

chosen	as	the	pivot	is	 	.	Use	this	to	define	indicator	random	variables	

th	smallest	element	is	chosen	as	the	pivot	 	.	What	is	 	?

b.	Let	 	be	a	random	variable	denoting	the	running	time	of	quicksort	on	an	array	of
size	 	.	Argue	that

Obviously.

c.	Show	that	we	can	rewrite	equation	(7.5)	as
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d.	Show	that

e.	Using	the	bound	from	equation	(7.7),	show	that	the	recurrence	in	equation	(7.6)	has

the	solution	 	.

Suppose	 	,
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7-4	Stack	depth	for	quicksort

The	QUICKSORT	algorithm	of	Section	7.1	contains	two	recursive	calls	to	itself.	After
QUICKSORT	calls	PARTITION,	it	recursively	sorts	the	left	subarray	and	then	it
recursively	sorts	the	right	subarray.	The	second	recursive	call	in	QUICKSORT	is	not
really	necessary;	we	can	avoid	it	by	using	an	iterative	control	structure.	This	technique,
called	tail	recursion,	is	provided	automatically	by	good	compilers.	Consider	the
following	version	of	quicksort,	which	simulates	tail	recursion:

TAIL-RECURSIVE-QUCIKSORT(A,	p,	r)

1	while	p	<	r

2					//	Partition	and	sort	left	subarray

3					q	=	PARTITION(A,	p,	r)

4					TAIL-RECURSIVE-QUCIKSORT(A,	p,	q	-	1)

5					p	=	q	+	1

a.	Argue	that	TAIL-RECURSIVE-QUICKSORT	 	correctly	sorts	the
array	 	.

The	function	needs	to	call	QUCIKSORT	 	,	set	 	to	 	then	go	to	line	1	is
exactly	the	same	form	of	calling	the	function.
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Compilers	usually	execute	recursive	procedures	by	using	a	stack	that	contains
pertinent	information,	including	the	parameter	values,	for	each	recursive	call.	The
information	for	the	most	recent	call	is	at	the	top	of	the	stack,	and	the	information	for	the
initial	call	is	at	the	bottom.	Upon	calling	a	procedure,	its	information	is	pushed	onto	the
stack;	when	it	terminates,	its	information	is	popped.	Since	we	assume	that	array
parameters	are	represented	by	pointers,	the	information	for	each	procedure	call	on	the

stack	requires	 	stack	space.	The	stack	depth	is	the	maximum	amount	of	stack
space	used	at	any	time	during	a	computation.

b.	Describe	a	scenario	in	which	TAIL-RECURSIVE-QUICKSORT’s	stack	depth	is	
on	an	 	-element	input	array.

c.	Modify	the	code	for	TAIL-RECURSIVE-QUICKSORT	so	that	the	worst-case	stack

depth	is	 	.	Maintain	the	 	expected	running	time	of	the	algorithm.
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def	partition(a,	p,	r):

				x	=	a[r	-	1]

				i	=	p	-	1

				for	k	in	range(p,	r	-	1):

								if	a[k]	<	x:

												i	+=	1

												a[i],	a[k]	=	a[k],	a[i]

				i	+=	1

				a[i],	a[r	-	1]	=	a[r	-	1],	a[i]

				j	=	i

				for	k	in	range(i	+	1,	r):

								if	a[k]	==	x:

												j	+=	1

												a[j],	a[k]	=	a[k],	a[j]

								k	-=	1

				return	i,	j

def	randomized_partition(a,	p,	r):

				x	=	random.randint(p,	r	-	1)

				a[x],	a[r	-	1]	=	a[r	-	1],	a[x]

				return	partition(a,	p,	r)

def	quicksort(a,	p,	r):

				while	p	<	r	-	1:

								q,	t	=	randomized_partition(a,	p,	r)

								if	q	-	p	<	r	-	t:

												quicksort(a,	p,	q)

												p	=	t	+	1

								else:

												quicksort(a,	t	+	1,	r)

												r	=	q

7-5	Median-of-3	partition
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One	way	to	improve	the	RANDOMIZED-QUICKSORT	procedure	is	to	partition	around	a
pivot	that	is	chosen	more	carefully	than	by	picking	a	random	element	from	the	subarray.
One	common	approach	is	the	median-of-3	method:	choose	the	pivot	as	the	median
(middle	element)	of	a	set	of	3	elements	randomly	selected	from	the	subarray.	(See
Exercise	7.4-6.)	For	this	problem,	let	us	assume	that	the	elements	in	the	input	array

	are	distinct	and	that	 	.	We	denote	the	sorted	output	array	by

	.	Using	the	median-of-3	method	to	choose	the	pivot	element	 	,	define

	.

a.	Give	an	extract	formula	for	 	as	a	function	of	 	and	 	for	 	.

(Note	that	 	.)

b.	By	what	amount	have	we	increased	the	likelihood	of	choosing	the	pivot	as

	,	the	median	of	 	,	compared	with	the	ordinary
implementaiton?	Assume	that	 	,	and	give	the	limiting	ratio	of	these
probabilities.

c.	If	we	define	a	"good"	split	to	mean	choosing	the	pivot	as	 	,	where

	,	by	what	amount	have	we	increased	the	likelihood	of	getting	a
good	split	compared	with	the	ordinary	implementation?
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d.	Argue	that	in	the	 	running	time	of	quicksort,	the	median-of-3	method
affects	only	the	constant	factor.

Even	if	median-of-3	choose	the	median	of	 	,	the	running	time	is	still

	,	which	is	 	.

7-6	Fuzzy	sorting	of	intervals

Consider	a	sorting	problem	in	which	we	do	not	know	the	numbers	exactly.	Instead,	for
each	number,	we	know	an	interval	on	the	real	line	to	which	it	belongs.	That	is,	we	are

given	 	closed	intervals	of	the	form	 	,	where	 	.	We	wish	to	fuzzy-sort

these	intervals,	i.e.,	to	produce	a	permutation	 	of	the	intervals	such

that	for	 	,	there	exist	 	satisfying

	.

a.	Design	a	randomized	algorithm	for	fuzzy-sorting	 	intervals.	Your	algorithm	should
have	the	general	structure	of	an	algorithm	that	quicksorts	the	left	endpoints	(the	
values),	but	it	should	take	advantage	of	overlapping	intervals	to	improve	the	running
time.	(As	the	intervals	overlap	more	and	more,	the	problem	of	fuzzy-sorting	the	intervals
becomes	progressively	easier.	Your	algorithm	should	take	advantage	of	such
overlapping,	to	the	extent	that	it	exists.)

Find	the	intervals	that	all	have	a	common	overlapping	with	the	pivot,	these	intervals	could	be
seen	as	equal	since	there	is	a	 	in	the	common	overlapping.	The	following	is	the	same	as
7.2.
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class	Interval:

				def	__init__(self,	l,	r):

								self.l	=	l

								self.r	=	r

				def	__lt__(self,	other):

								return	self.r	<	other.l

				def	__str__(self):

								return	'('	+	str(self.l)	+	',	'	+	str(self.r)	+	')'

				def	get_intersect(self,	interval):

								return	Interval(max(self.l,	interval.l),	min(self.r,	interval.r))

def	partition(a,	p,	r):

				x	=	a[r	-	1]

				for	k	in	range(p,	r	-	1):

								next_x	=	x.get_intersect(a[k])

								if	next_x.l	<=	next_x.r:

												x	=	next_x

				i	=	p	-	1

				for	k	in	range(p,	r	-	1):

								if	a[k]	<	x:

												i	+=	1

												a[i],	a[k]	=	a[k],	a[i]

				i	+=	1

				a[i],	a[r	-	1]	=	a[r	-	1],	a[i]

				j	=	i

				inter	=	a[i]

				for	k	in	range(i	+	1,	r):

								next_x	=	x.get_intersect(a[k])

								if	next_x.l	<=	next_x.r:

												j	+=	1

												a[j],	a[k]	=	a[k],	a[j]

								k	-=	1

				return	i,	j

def	randomized_partition(a,	p,	r):

				x	=	random.randint(p,	r	-	1)

				a[x],	a[r	-	1]	=	a[r	-	1],	a[x]

				return	partition(a,	p,	r)

def	quicksort(a,	p,	r):

				if	p	<	r	-	1:

								q,	t	=	randomized_partition(a,	p,	r)

								quicksort(a,	p,	q)

								quicksort(a,	t	+	1,	r)
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b.	Argue	that	your	algorithm	runs	in	expected	time	 	in	general,	but	runs	in

expected	time	 	when	all	of	the	intervals	overlap	(i.e.,	when	there	exists	a	value	

such	that	 	for	all	 	).	Your	algorithm	should	not	be	checking	for	this	case
explicitly;	rather,	its	performance	should	naturally	improve	as	the	amount	of	overlap
increases.

The	algorithm	is	based	on	quick-sort,	therefore	it	is	 	.

If	all	of	the	intervals	overlap,	the	partition	returns	 	immediately,	there	is	no	need	for

further	recursion.	Thus	the	expected	time	is	the	expected	time	of	partition,	which	is	 	.
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8	Sorting	in	Linear	Time
8.1	Lower	bounds	for	sorting
8.2	Counting	sort
8.3	Radix	sort
8.4	Bucket	sort
Problems

8	Sorting	in	Linear	Time
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8.1	Lower	bounds	for	sorting

8.1-1

What	is	the	smallest	possible	depth	of	a	leaf	in	a	decision	tree	for	a	comparison	sort?

For	a	permutation	 	,	there	are	 	pairs	of	relative	ordering,	thus

the	smallest	possible	depth	is	 	.

8.1-2

Obtain	asymptotically	tight	bounds	on	 	without	using	Stirling’s	approximation.

Instead,	evaluate	the	summation	 	using	techniques	from	Section	A.2.

8.1-3

Show	that	there	is	no	comparison	sort	whose	running	time	is	linear	for	at	least	half	of

the	 	inputs	of	length	 	.	What	about	a	fraction	of	 	of	the	inputs	of	length	 	?

What	about	a	fraction	 	?

8.1	Lower	bounds	for	sorting
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All	of	them	have	the	lower-bound	 	.

8.1-4

Suppose	that	you	are	given	a	sequence	of	 	elements	to	sort.	The	input	sequence

consists	of	 	subsequences,	each	containing	 	elements.	The	elements	in	a	given
subsequence	are	all	smaller	than	the	elements	in	the	succeeding	subsequence	and
larger	than	the	elements	in	the	preceding	subsequence.	Thus,	all	that	is	needed	to	sort

the	whole	sequence	of	length	 	is	to	sort	the	 	elements	in	each	of	the	

subsequences.	Show	an	 	lower	bound	on	the	number	of	comparisons
needed	to	solve	this	variant	of	the	sorting	problem.

8.1	Lower	bounds	for	sorting
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8.1	Lower	bounds	for	sorting
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8.2	Counting	sort

8.2-1

Using	Figure	8.2	as	a	model,	illustrate	the	operation	of	COUNTING-SORT	on	the	array

	.

8.2-2

Prove	that	COUNTING-SORT	is	stable.

Value	with	larger	index	choose	the	largest	index	first.

8.2-3

8.2	Counting	sort
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Suppose	that	we	were	to	rewrite	the	for	loop	header	in	line	10	of	the	COUNTING-SORT
as

10	for	j	=	1	to	A.length

Show	that	the	algorithm	still	works	properly.	Is	the	modified	algorithm	stable?

works	properly	but	not	stable.

8.2-4

Describe	an	algorithm	that,	given	n	integers	in	the	range	 	to	 	,	preprocesses	its	input
and	then	answers	any	query	about	how	many	of	the	 	integers	fall	into	a	range

	in	 	time.	Your	algorithm	should	use	 	preprocessing	time.

Use		C		in	the	counting	sort,	the	number	of	integers	fall	into	a	range	 	is

	.

class	CountInterval:

				def	__init__(self,	a):

								k	=	max(a)

								self.c	=	[0	for	_	in	range(k	+	1)]

								for	v	in	a:

												self.c[v]	+=	1

								for	i	in	range(1,	k	+	1):

												self.c[i]	+=	self.c[i	-	1]

				def	count(self,	a,	b):

								if	a	==	0:

												return	self.c[b]

								return	self.c[b]	-	self.c[a	-	1]

8.2	Counting	sort
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8.3	Radix	sort

8.3-1

Using	Figure	8.3	as	a	model,	illustrate	the	operation	of	RADIX-SORT	on	the	following
list	of	English	words:	COW,	DOG,	SEA,	RUG,	ROW,	MOB,	BOX,	TAB,	BAR,	EAR,	TAR,
DIG,	BIG,	TEA,	NOW,	FOX.

0 1 2 3

COW SEA TAB BAR

DOG TEA BAR BIG

SEA MOB EAR BOX

RUG TAB TAR COW

ROW DOG SEA DIG

MOB RUG TEA DOG

BOX DIG DIG EAR

TAB BIG BIG FOX

BAR BAR MOB MOB

EAR EAR DOG NOW

TAR TAR COW ROW

DIG COW ROW RUG

BIG ROW NOW SEA

TEA NOW BOX TAB

NOW BOX FOX TAR

FOX FOX RUG TEA

8.3-2

Which	of	the	following	sorting	algorithms	are	stable:	insertion	sort,	merge	sort,
heapsort,	and	quicksort?	Give	a	simple	scheme	that	makes	any	sorting	algorithm
stable.	How	much	additional	time	and	space	does	your	scheme	entail?

Stable:	insertion	sort,	merge	sort.

When	two	values	are	equals,	compare	the	original	index.	Additional	space:	

8.3	Radix	sort
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8.3-3

Use	induction	to	prove	that	radix	sort	works.	Where	does	your	proof	need	the
assumption	that	the	intermediate	sort	is	stable?

8.3-4

Show	how	to	sort	n	integers	in	the	range	 	to	 	in	 	time.

	-ary	radix	sort,	including	three	 	counting	sort.

8.3-5	

In	the	first	card-sorting	algorithm	in	this	section,	exactly	how	many	sorting	passes	are
needed	to	sort	 	-digit	decimal	numbers	in	the	worst	case?	How	many	piles	of	cards
would	an	operator	need	to	keep	track	of	in	the	worst	case?

	passes.

	piles.

8.3	Radix	sort
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8.4	Bucket	sort

8.4-1

Using	Figure	8.4	as	a	model,	illustrate	the	operation	of	BUCKET-SORT	on	the	array

	.

R

0

1 .13	.16

2 .20

3 .39

4 .42

5 .53

6 .64

7

8 .79	.71

9 .89

8.4-2

Explain	why	the	worst-case	running	time	for	bucket	sort	is	 	.	What	simple
change	to	the	algorithm	preserves	its	linear	average-case	running	time	and	makes	its

worst-case	running	time	 	?

Worst:	all	the	elements	falls	in	one	bucket,	 	sorting.

Change:	use	merge	sort	in	each	bucket.

8.4-3

Let	 	be	a	random	variable	that	is	equal	to	the	number	of	heads	in	two	flips	of	a	fair

coin.	What	is	 	?	What	is	 	?

8.4	Bucket	sort
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8.4-4	

We	are	given	 	points	in	the	unit	circle,	 	,	such	that	

for	 	.	Suppose	that	the	points	are	uniformly	distributed;	that	is,	the
probability	of	finding	a	point	in	any	region	of	the	circle	is	proportional	to	the	area	of	that

region.	Design	an	algorithm	with	an	average-case	running	time	of	 	to	sort	the	

points	by	their	distances	 	from	the	origin.

Bucket	sort	by	radius,

8.4-5	

A	probability	distribution	function	 	for	a	random	variable	 	is	defined	by

	.	Suppose	that	we	draw	a	list	of	 	random	variables

	from	a	continuous	probability	distribution	function	 	that	is

computable	in	 	time.	Give	an	algorithm	that	sorts	these	numbers	in	linear
average-case	time.

Bucket	sort	by	 	,

8.4	Bucket	sort
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Problems

8-1	Probabilistic	lower	bounds	on	comparison	sorting

In	this	problem,	we	prove	a	probabilistic	 	lower	bound	on	the	running	time	of
any	deterministic	or	randomized	comparison	sort	on	 	distinct	input	elements.	We

begin	by	examining	a	deterministic	comparison	sort	 	with	decision	tree	 	.	We
assume	that	every	permutation	of	 	's	inputs	is	equally	likely.

a.	Suppose	that	each	leaf	of	 	is	labeled	with	the	probability	that	it	is	reached	given	a

random	input.	Prove	that	exactly	 	leaves	are	labeled	 	and	that	the	rest	are
labeled	0.

There	should	be	only	 	leaves.

b.	Let	 	denote	the	external	path	length	of	a	decision	tree	 	;	that	is,	 	is	the
sum	of	the	depths	of	all	the	leaves	of	 	.	Let	 	be	a	decision	tree	with	 	leaves,
and	let	 	and	 	be	the	left	and	right	subtrees	of	 	.	Show	that

	.

Add	 	means	all	the	 	depths	of	leaves	increase	by	1.

c.	Let	 	be	the	minimum	value	of	 	over	all	decision	trees	 	with	

leaves.	Show	that	 	.

	,	
iterates	all	the	possibilities.

d.	Prove	that	for	a	given	value	of	 	and	 	in	the	range	 	,	the

function	 	is	minimized	at	 	.	Conclude	that

	.
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e.	Prove	that	 	,	and	conclude	that	the	average-case	time	to

sort	 	elements	is	 	.

Average:

Now,	consider	a	randomized	comparison	sort	 	.	We	can	extend	the	decision-tree
model	to	handle	randomization	by	incorporating	two	kinds	of	nodes:	ordinary
comparison	nodes	and	"randomization"	nodes.	A	randomization	node	models	a	random

choice	of	the	form	RANDOM	 	made	by	algorithm	 	;	the	node	has	 	children,
each	of	which	is	equally	likely	to	be	chosen	during	an	execution	of	the	algorithm.

f.	Show	that	for	any	randomized	comparison	sort	 	,	there	exists	a	deterministic
comparison	sort	 	whose	expected	number	of	comparisons	is	no	more	than	those
made	by	 	.

8-2	Sorting	in	place	in	linear	time

Suppose	that	we	have	an	array	of	 	data	records	to	sort	and	that	the	key	of	each
record	has	the	value	0	or	1.	An	algorithm	for	sorting	such	a	set	of	records	might
possess	some	subset	of	the	following	three	desirable	characteristics:

1.	 The	algorithm	runs	in	 	time.
2.	 The	algorithm	is	stable.
3.	 The	algorithm	sorts	in	place,	using	no	more	than	a	constant	amount	of	storage

space	in	addition	to	the	original	array.

a.	Give	an	algorithm	that	satisfies	criteria	1	and	2	above.
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Counting	sort.

b.	Give	an	algorithm	that	satisfies	criteria	1	and	3	above.

Partition.

c.	Give	an	algorithm	that	satisfies	criteria	2	and	3	above.

Insertion	sort.

d.	Can	you	use	any	of	your	sorting	algorithms	from	parts	(a)-(c)	as	the	sorting	method
used	in	line	2	of	RADIX-SORT,	so	that	RADIX-SORT	sorts	n	records	with	 	-bit	keys	in

	time?	Explain	how	or	why	not.

First,	stable	and	quick.

e.	Suppose	that	the	 	records	have	keys	in	the	range	from	1	to	 	.	Show	how	to	modify

counting	sort	so	that	it	sorts	the	records	in	place	in	 	time.	You	may	use

	storage	outside	the	input	array.	Is	your	algorithm	stable?

Same	as	permutation	group:

def	counting_in_place(a):

				k	=	max(a)

				c	=	[0	for	_	in	range(k	+	1)]

				for	v	in	a:

								c[v]	+=	1

				for	i	in	range(1,	k	+	1):

								c[i]	+=	c[i	-	1]

				r	=	c[:]

				for	i	in	range(len(a)):

								while	True:

												if	a[i]	==	0:

																if	i	<	r[0]:

																				break

												else:

																if	r[a[i]	-	1]	<=	i	<	r[a[i]]:

																				break

												c[a[i]]	-=	1

												pos	=	c[a[i]]

												a[i],	a[pos]	=	a[pos],	a[i]

Not	stable.

8-3	Sorting	variable-length	items
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a.	You	are	given	an	array	of	integers,	where	different	integers	may	have	different
numbers	of	digits,	but	the	total	number	of	digits	over	all	the	integers	in	the	array	is	 	.

Show	how	to	sort	the	array	in	 	time.

Suppose	the	number	of	integers	which	have	 	digits	is	 	,	divide	the	integers	into	different

buckets	using	counting	sort,	the	integers	in	the	same	bucket	have	the	same	 	,	then	use
radix	sort	in	each	bucket:

therefore	the	algorithm	is	 	.
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def	counting_sort(a,	m):

				b	=	[0	for	_	in	range(len(a))]

				k	=	10

				c	=	[0	for	_	in	range(k)]

				for	s	in	a:

								c[ord(s[m])	-	ord('0')]	+=	1

				for	i	in	range(1,	k):

								c[i]	+=	c[i	-	1]

				for	i	in	range(len(a)	-	1,	-1,	-1):

								c[ord(a[i][m])	-	ord('0')]	-=	1

								b[c[ord(a[i][m])	-	ord('0')]]	=	a[i]

				return	b

def	radix_sort(a):

				for	m	in	range(len(a[0])	-	1,	-1,	-1):

								a	=	counting_sort(a,	m)

				return	a

def	count_and_divide(a):

				a	=	map(str,	a)

				b	=	[0	for	_	in	range(len(a))]

				k	=	0

				for	s	in	a:

								k	=	max(k,	len(s))

				c	=	[0	for	_	in	range(k	+	1)]

				for	s	in	a:

								c[len(s)]	+=	1

				for	i	in	range(1,	k	+	1):

								c[i]	+=	c[i	-	1]

				r	=	c[:]

				for	i	in	range(len(a)	-	1,	-1,	-1):

								c[len(a[i])]	-=	1

								b[c[len(a[i])]]	=	a[i]

				for	i	in	range(k	+	1):

								if	c[i]	<	r[i]:

												b[c[i]:r[i]]	=	radix_sort(b[c[i]:r[i]])

				return	map(int,	b)

b.	You	are	given	an	array	of	strings,	where	different	strings	may	have	different	numbers
of	characters,	but	the	total	number	of	characters	over	all	the	strings	is	 	.	Show	how	to

sort	the	strings	in	 	time.	(Note	that	the	desired	order	here	is	the	standard
alphabetical	order;	for	example,	 	.)

Sort	the	strings	by	their	first	characters	with	counting-sort,	then	divide	the	strings	by	their	first
characters,	repeat	the	process	in	each	new	group.	Since	each	character	is	used	only	once

for	sorting,	the	amortized	running	time	is	 	.
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def	get_key(s,	i):

				if	i	>=	len(s):

								return	0

				return	ord(s[i])	-	ord('a')	+	1

def	counting_sort(a,	p=0):

				k	=	27

				b	=	[''	for	_	in	range(len(a))]

				c	=	[0	for	_	in	range(k)]

				for	s	in	a:

								c[get_key(s,	p)]	+=	1

				for	i	in	range(1,	k):

								c[i]	+=	c[i	-	1]

				r	=	c[:]

				for	i	in	range(len(a)	-	1,	-1,	-1):

								c[get_key(a[i],	p)]	-=	1

								b[c[get_key(a[i],	p)]]	=	a[i]

				for	i	in	range(1,	k):

								if	c[i]	<	r[i]:

												b[c[i]:r[i]]	=	counting_sort(b[c[i]:r[i]],	p+1)

				return	b

8-4	Water	jugs

Suppose	that	you	are	given	 	red	and	 	blue	water	jugs,	all	of	different	shapes	and
sizes.	All	red	jugs	hold	different	amounts	of	water,	as	do	the	blue	ones.	Moreover,	for
every	red	jug,	there	is	a	blue	jug	that	holds	the	same	amount	of	water,	and	vice	versa.

Your	task	is	to	find	a	grouping	of	the	jugs	into	pairs	of	red	and	blue	jugs	that	hold	the
same	amount	of	water.	To	do	so,	you	may	perform	the	following	operation:	pick	a	pair	of
jugs	in	which	one	is	red	and	one	is	blue,	fill	the	red	jug	with	water,	and	then	pour	the
water	into	the	blue	jug.	This	operation	will	tell	you	whether	the	red	or	the	blue	jug	can
hold	more	water,	or	that	they	have	the	same	volume.	Assume	that	such	a	comparison
takes	one	time	unit.	Your	goal	is	to	find	an	algorithm	that	makes	a	minimum	number	of
comparisons	to	determine	the	grouping.	Remember	that	you	may	not	directly	compare
two	red	jugs	or	two	blue	jugs.

a.	Describe	a	deterministic	algorithm	that	uses	 	comparisons	to	group	the	jugs
into	pairs.

Compare	each	red	jug	with	each	blue	jug.

b.	Prove	a	lower	bound	of	 	for	the	number	of	comparisons	that	an	algorithm
solving	this	problem	must	make.
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c.	Give	a	randomized	algorithm	whose	expected	number	of	comparisons	is	
,	and	prove	that	this	bound	is	correct.	What	is	the	worst-case	number	of	comparisons
for	your	algorithm?

Random	choose	a	red	jug	as	pivot	and	partition	blue	rugs,	and	use	the	blue	rug	which	is
equal	to	the	red	rug	as	pivot	and	partition	red	rugs.

Worst	case	is	 	.

def	partition(a,	b,	p,	r):

				pos	=	random.randint(p,	r	-	1)

				i	=	p	-	1

				for	j	in	range(p,	r):

								if	b[j]	<=	a[pos]:

												i	+=	1

												b[i],	b[j]	=	b[j],	b[i]

												if	b[i]	==	a[pos]:

																k	=	i

				b[i],	b[k]	=	b[k],	b[i]

				pos	=	i

				i	=	p	-	1

				for	j	in	range(p,	r):

								if	a[j]	<=	b[pos]:

												i	+=	1

												a[i],	a[j]	=	a[j],	a[i]

												if	a[i]	==	b[pos]:

																k	=	i

				a[i],	a[k]	=	a[k],	a[i]

				return	pos

def	quick_sort(a,	b,	p,	r):

				if	p	+	1	<	r:

								q	=	partition(a,	b,	p,	r)

								quick_sort(a,	b,	p,	q)

								quick_sort(a,	b,	q	+	1,	r)

8-5	Average	sorting
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Suppose	that,	instead	of	sorting	an	array,	we	just	require	that	the	elements	increase	on
average.	More	precisely,	we	call	an	 	-element	array	 	k-sorted	if,	for	all

	,	the	following	holds:

a.	What	does	it	mean	for	an	array	to	be	1-sorted?

Sorted.

b.	Give	a	permutation	of	the	numbers	 	that	is	2-sorted,	but	not	sorted.

1,	2,	1,	2,	1,	2

c.	Prove	that	an	 	-element	array	is	 	-sorted	if	and	only	if	 	for	all

	.

d.	Give	an	algorithm	that	 	-sorts	an	 	-element	array	in	 	time.

We	need	to	sort	 	groups,	each	group	has	the	same	 	.	We	can	sort	one	group

in	 	,	to	sort	 	groups,	it	is	 	.

def	k_sort(a,	k):

				for	i	in	range(k):

								a[i:len(a):k]	=	sorted(a[i:len(a):k])

We	can	also	show	a	lower	bound	on	the	time	to	produce	a	 	-sorted	array,	when	 	is	a
constant.

e.	Show	that	we	can	sort	a	 	-sorted	array	of	length	 	in	 	time.

Same	as	Exercise	6.5-9.
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f.	Show	that	when	 	is	a	constant,	 	-sorting	an	 	-element	array	requires	
time.

8-6	Lower	bound	on	merging	sorted	lists

The	problem	of	merging	two	sorted	lists	arises	frequently.	We	have	seen	a	procedure
for	it	as	the	subroutine	MERGE	in	Section	2.3.1.	In	this	problem,	we	will	prove	a	lower

bound	of	 	on	the	worst-case	number	of	comparisons	required	to	merge	two

sorted	lists,	each	containing	 	items.	First	we	will	show	a	lower	bound	of	
comparisons	by	using	a	decision	tree.

a.	Given	 	numbers,	compute	the	number	of	possible	ways	to	divide	them	into	two
sorted	lists,	each	with	 	numbers.

b.	Using	a	decision	tree	and	your	answer	to	part	(a),	show	that	any	algorithm	that

correctly	merges	two	sorted	lists	must	perform	at	least	 	comparisons.

Based	on	Exercise	C.1.13,

Now	we	will	show	a	slightly	tighter	 	bound.

c.	Show	that	if	two	elements	are	consecutive	in	the	sorted	order	and	from	different	lists,
then	they	must	be	compared.

We	have	to	know	the	order	of	the	two	consecutive	elements.

d.	Use	your	answer	to	the	previous	part	to	show	a	lower	bound	of	 	comparisons
for	merging	two	sorted	lists.
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There	are	 	pairs	of	consecutive	elements.

8-7	The	0-1	sorting	lemma	and	columnsort
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9	Medians	and	Order	Statistics
9.1	Minimum	and	maximum
9.2	Selection	in	expected	linear	time
9.3	Selection	in	worst-case	linear	time
Problems

9	Medians	and	Order	Statistics
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9.1	Minimum	and	maximum

9.1-1

Show	that	the	second	smallest	of	 	elements	can	be	found	with	
comparisons	in	the	worst	case.

Divide	the	elements	into	the	leaves	of	a	binary	tree.	In	each	node,	we	compare	the	minimum
values	of	its	two	sub-trees,	then	in	the	root	node	we	know	which	is	the	smallest	element

using	 	comparisons.	Since	only	the	smallest	element	is	less	than	the	second	smallest
element,	the	two	elements	must	have	been	compared	in	order	to	knock	out	the	second
smallest	element	when	finding	the	minimum.	In	other	words,	the	second	smallest	number
must	have	been	appeared	as	the	opponent	in	the	path	to	the	leaf	which	has	the	smallest

element.	The	depth	of	the	tree	is	 	,	thus	we	need	 	comparisons	to	find
the	second	smallest	element.

def	find_second_smallest(a,	l,	r):

				if	l	+	1	==	r:

								return	a[l],	[]

				mid	=	(l	+	r	+	1)	//	2

				min_l,	lst_l	=	find_second_smallest(a,	l,	mid)

				min_r,	lst_r	=	find_second_smallest(a,	mid,	r)

				if	min_l	<=	min_r:

								min_val,	lst	=	min_l,	lst_l	+	[min_r]

				else:

								min_val,	lst	=	min_r,	lst_r	+	[min_l]

				if	l	==	0	and	r	==	len(a):

								idx	=	0

								for	i	in	range(1,	len(lst)):

												if	lst[i]	<	lst[idx]:

																idx	=	i

								return	lst[idx]

				return	min_val,	lst

9.1-2	

Prove	the	lower	bound	of	 	comparisons	in	the	worst	case	to	find	both	the
maximum	and	minimum	of	 	numbers.

If	 	is	odd,	there	are

9.1	Minimum	and	maximum
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comparisons.

If	 	is	even,	there	are

comparisons.

9.1	Minimum	and	maximum
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9.2	Selection	in	expected	linear	time

9.2-1

Show	that	RANDOMIZED-SELECT	never	makes	a	recursive	call	to	a	0-length	array.

9.2-2

Argue	that	the	indicator	random	variable	 	and	the	value	
are	independent.

9.2-3

Write	an	iterative	version	of	RANDOMIZED-SELECT.

9.2	Selection	in	expected	linear	time
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def	partition(a,	p,	r):

				x	=	a[r	-	1]

				i	=	p	-	1

				for	k	in	range(p,	r	-	1):

								if	a[k]	<	x:

												i	+=	1

												a[i],	a[k]	=	a[k],	a[i]

				i	+=	1

				a[i],	a[r	-	1]	=	a[r	-	1],	a[i]

				return	i

def	randomized_partition(a,	p,	r):

				x	=	random.randint(p,	r	-	1)

				a[x],	a[r	-	1]	=	a[r	-	1],	a[x]

				return	partition(a,	p,	r)

def	randomized_select(a,	p,	r,	i):

				while	True:

								if	p	+	1	==	r:

												return	a[p]

								q	=	randomized_partition(a,	p,	r)

								k	=	q	-	p	+	1

								if	i	==	k:

												return	a[q]

								if	i	<	k:

												r	=	q

								else:

												p	=	q	+	1

												i	-=	k

9.2-4

Suppose	we	use	RANDOMIZED-SELECT	to	select	the	minimum	element	of	the	array

	.	Describe	a	sequence	of	partitions	that	results	in	a
worst-case	performance	of	RANDOMIZED-SELECT.

Select	9,	8,	7,	6,	5,	4,	3,	2,	1.

9.2	Selection	in	expected	linear	time
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9.3	Selection	in	worst-case	linear	time

9.3-1

In	the	algorithm	SELECT,	the	input	elements	are	divided	into	groups	of	5.	Will	the
algorithm	work	in	linear	time	if	they	are	divided	into	groups	of	7?	Argue	that	SELECT
does	not	run	in	linear	time	if	groups	of	3	are	used.

Suppose	the	input	elements	are	divided	into	 	groups,	then

Suppose	 	,

Suppose	the	input	elements	are	divided	into	 	groups,	then

Suppose	 	,

Therefore	SELECT	does	not	run	in	linear	time	if	groups	of	3	are	used.

9.3-2

9.3	Selection	in	worst-case	linear	time
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Analyze	SELECT	to	show	that	if	 	,	then	at	least	 	elements	are	greater

than	the	median-of-medians	 	and	at	least	 	elements	are	less	than	 	.

9.3-3

Show	how	quicksort	can	be	made	to	run	in	 	time	in	the	worst	case,
assuming	that	all	elements	are	distinct.

Use	median	as	pivot,	since	we	can	find	median	in	 	,	and	based	on	Problem	7-2	(b),	we

have	 	.

9.3-4	

Suppose	that	an	algorithm	uses	only	comparisons	to	find	the	 	th	smallest	element	in	a

set	of	 	elements.	Show	that	it	can	also	find	the	 	smaller	elements	and	
larger	elements	without	performing	additional	comparisons.

9.3-5

Suppose	that	you	have	a	"black-box"	worst-case	linear-time	median	subroutine.	Give	a
simple,	linear-time	algorithm	that	solves	the	selection	problem	for	an	arbitrary	order
statistic.

9.3	Selection	in	worst-case	linear	time
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def	black_box_median(a,	p,	r):

				return	sorted(a)[(p	+	r)	//	2]

def	partition(a,	p,	r,	x):

				i	=	p	-	1

				for	k	in	range(p,	r	-	1):

								if	a[k]	==	x:

												a[k],	a[r	-	1]	=	a[r	-	1],	a[k]

												break

				for	k	in	range(p,	r	-	1):

								if	a[k]	<	x:

												i	+=	1

												a[i],	a[k]	=	a[k],	a[i]

				i	+=	1

				a[i],	a[r	-	1]	=	a[r	-	1],	a[i]

				return	i

def	select(a,	p,	r,	i):

				if	p	+	1	==	r:

								return	a[p]

				x	=	black_box_median(a,	p,	r)

				q	=	partition(a,	p,	r,	x)

				k	=	q	-	p	+	1

				if	i	==	k:

								return	a[q]

				if	i	<	k:

								return	select(a,	p,	q,	i)

				return	select(a,	q	+	1,	r,	i	-	k)

9.3-6

The	 	th	quantiles	of	an	 	-element	set	are	the	 	order	statistics	that	divide	the

sorted	set	into	 	equal-sized	sets	(to	within	1).	Give	an	 	-time	algorithm	to
list	the	 	th	quantiles	of	a	set.

Pre-calculate	the	positions	of	the	quantiles	in	 	,	we	use	the	 	select	algorithm	to

find	the	 	th	position,	after	that	the	elements	are	divided	into	two	sets	by	the	pivot	the

	th	position,	we	do	it	recursively	in	the	two	sets	to	find	other	positions.	Since	the

maximum	depth	is	 	,	the	total	running	time	is	 	.

def	partition(a,	p,	r):

				x	=	a[r	-	1]

				i	=	p	-	1

				for	k	in	range(p,	r	-	1):
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								if	a[k]	<	x:

												i	+=	1

												a[i],	a[k]	=	a[k],	a[i]

				i	+=	1

				a[i],	a[r	-	1]	=	a[r	-	1],	a[i]

				return	i

def	randomized_partition(a,	p,	r):

				x	=	random.randint(p,	r	-	1)

				a[x],	a[r	-	1]	=	a[r	-	1],	a[x]

				return	partition(a,	p,	r)

def	randomized_select(a,	p,	r,	i):

				while	True:

								if	p	+	1	==	r:

												return	p,	a[p]

								q	=	randomized_partition(a,	p,	r)

								k	=	q	-	p	+	1

								if	i	==	k:

												return	q,	a[q]

								if	i	<	k:

												r	=	q

								else:

												p	=	q	+	1

												i	-=	k

def	k_quantiles_sub(a,	p,	r,	pos,	f,	e,	quantiles):

				if	f	+	1	>	e:

								return

				mid	=	(f	+	e)	//	2

				q,	val	=	randomized_select(a,	p,	r,	pos[mid])

				quantiles[mid]	=	val

				k_quantiles_sub(a,	p,	q,	pos,	f,	mid,	quantiles)

				k	=	q	-	p	+	1

				for	i	in	xrange(mid	+	1,	e):

								pos[i]	-=	k

				k_quantiles_sub(a,	q	+	1,	r,	pos,	mid	+	1,	e,	quantiles)

def	k_quantiles(a,	k):

				num	=	len(a)	/	k

				mod	=	len(a)	%	k

				pos	=	[num	for	_	in	xrange(k)]

				for	i	in	xrange(mod):

								pos[i]	+=	1

				for	i	in	xrange(1,	k):

								pos[i]	+=	pos[i	-	1]

				quantiles	=	[0	for	_	in	xrange(k)]

				k_quantiles_sub(a,	0,	len(a),	pos,	0,	len(pos),	quantiles)

				return	quantiles
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9.3-7

Describe	an	 	-time	algorithm	that,	given	a	set	 	of	 	distinct	numbers	and	a

positive	integer	 	,	determines	the	 	numbers	in	 	that	are	closest	to	the	median
of	 	.

Find	the	median	in	 	;	create	a	new	array,	each	element	is	the	absolute	value	of	the

original	value	subtract	the	median;	find	the	 	th	smallest	number	in	 	,	then	the	desired
values	are	the	elements	whose	absolute	difference	with	the	median	is	less	than	or	equal	to
the	 	th	smallest	number	in	the	new	array.

def	black_box_kth(a,	k):

				return	sorted(a)[k-1]

def	black_box_median(a):

				return	sorted(a)[(len(a)	-	1)	//	2]

def	k_closest(a,	k):

				median	=	black_box_median(a)

				b	=	[abs(a[i]	-	median)	for	i	in	xrange(len(a))]

				kth	=	black_box_kth(b,	k)

				closest	=	[]

				for	i	in	xrange(len(a)):

								if	abs(a[i]	-	median)	<	kth:

												closest.append(a[i])

				for	i	in	xrange(len(a)):

								if	abs(a[i]	-	median)	==	kth:

												closest.append(a[i])

								if	len(closest)	>=	k:

												break

				return	closest

9.3-8

Let	 	and	 	be	two	arrays,	each	containing	 	numbers	already	in

sorted	order.	Give	an	 	-time	algorithm	to	find	the	median	of	all	 	elements	in
arrays	 	and	 	.
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We	can	find	the	median	in	 	time	in	a	sorted	array,	compare	the	medians	of	the	two
array,	if	the	median	of	 	is	less	than	the	median	of	 	,	then	we	know	the	median	must
located	in	the	right	side	of	 	or	left	side	of	 	.	Do	it	recursively,	when	there	is	only	one
element	left	in	each	array,	the	smaller	one	is	the	median.

def	median_of_two(a,	b):

				if	len(a)	==	1:

								return	min(a[0],	b[0])

				mid	=	(len(a)	-	1)	//	2

				k	=	mid	+	1

				if	a[mid]	<=	b[mid]:

								return	median_of_two(a[-k:],	b[:k])

				return	median_of_two(a[:k],	b[-k:])

9.3-9

Professor	Olay	is	consulting	for	an	oil	company,	which	is	planning	a	large	pipeline
running	east	to	west	through	an	oil	field	of	 	wells.	The	company	wants	to	connect	a
spur	pipeline	from	each	well	directly	to	the	main	pipeline	along	a	shortest	route	(either
north	or	south),	as	shown	in	Figure	9.2.	Given	the	 	-	and	 	-coordinates	of	the	wells,
how	should	the	professor	pick	the	optimal	location	of	the	main	pipeline,	which	would	be
the	one	that	minimizes	the	total	length	of	the	spurs?	Show	how	to	determine	the	optimal
location	in	linear	time.

Find	the	median	of	 	.	Suppose	 	is	odd,	if	we	move	the	main	pipeline	slightly,	then	the	total

distance	will	be	increased	by	 	for	one	side	and	decreased	by

	for	the	other	side,	thus	the	total	distance	is	increased	by	 	.
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Problems

9-1	Largest	 	numbers	in	sorted	order

Given	a	set	of	 	numbers,	we	wish	to	find	the	 	largest	in	sorted	order	using	a
comparison-based	algorithm.	Find	the	algorithm	that	implements	each	of	the	following
methods	with	the	best	asymptotic	worst-case	running	time,	and	analyze	the	running
times	of	the	algorithms	in	terms	of	 	and	 	.

a.	Sort	the	numbers,	and	list	the	 	largest.

Depends	on	the	sorting	algorithm,	with	heap	sort	the	worst-case	is	 	.

b.	Build	a	max-priority	queue	from	the	numbers,	and	call	EXTRACT-MAX	 	times.

Build	the	heap	is	 	,	extract	is	 	,	thus	the	worst	time	is	 	.

c.	Use	an	order-statistic	algorithm	to	find	the	 	th	largest	number,	partition	around	that
number,	and	sort	the	 	largest	numbers.

	.

9-2	Weighted	median

For	 	distinct	elements	 	with	positive	weights	 	such

that	 	,	the	weighted	(lower)	median	is	the	element	 	satisfying

and

a.	Argue	that	the	median	of	 	is	the	weighted	median	of	the	 	with

weights	 	for	 	.

Problems

185



b.	Show	how	to	compute	the	weighted	median	of	 	elements	in	 	worstcase
time	using	sorting.

def	weighted_median(x):

				x.sort()

				s	=	0.0

				for	i	in	range(len(x)):

								s	+=	x[i]

								if	s	>=	0.5:

												return	x[i]

c.	Show	how	to	compute	the	weighted	median	in	 	worst-case	time	using	a	linear-
time	median	algorithm	such	as	SELECT	from	Section	9.3.

Use	the	median	as	pivot,	the	algorithm	is	exactly	 	.
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def	black_box_median(a,	p,	r):

				return	sorted(a[p:r])[(r	-	p	-	1)	//	2]

def	partition(a,	p,	r,	x):

				s	=	x

				i	=	p	-	1

				for	j	in	xrange(p,	r	-	1):

								if	a[j]	==	x:

												a[j],	a[r	-	1]	=	a[r	-	1],	a[j]

												break

				for	j	in	xrange(p,	r	-	1):

								if	a[j]	<	x:

												i	+=	1

												s	+=	a[j]

												a[i],	a[j]	=	a[j],	a[i]

				i	+=	1

				a[i],	a[r	-	1]	=	a[r	-	1],	a[i]

				return	i,	s

def	weighted_median(a,	p,	r,	w=0.5):

				if	p	+	1	>=	r:

								return	a[p]

				x	=	black_box_median(a,	p,	r)

				q,	s	=	partition(a,	p,	r,	x)

				if	s	-	a[q]	<	w	and	s	>=	w:

								return	a[q]

				if	s	>=	w:

								return	weighted_median(a,	p,	q,	w)

				return	weighted_median(a,	q	+	1,	r,	w	-	s)

The	post-office	location	problem	is	defined	as	follows.	We	are	given	 	points
	with	associated	wegihts	 	.	We	wish	to	find	a	point	

that	minimizes	the	sum	 	,	where	 	is	the	distance	between
points	 	and	 	.

d.	Argue	that	the	weighted	median	is	a	best	solution	for	the	1-dimensional	postoffice
location	problem,	in	which	points	are	simply	real	numbers	and	the	distance	between

points	 	and	 	is	 	.

Same	as	Exercise	9.3-9.
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e.	Find	the	best	solution	for	the	2-dimensional	post-office	location	problem,	in	which	the

points	are	 	coordinate	pairs	and	the	distance	between	points	

and	 	is	the	Manhattan	distance	given	by

	.

Since	 	and	 	are	independent,	the	best	solution	is	the	medians	of	 	and	 	separately.

9-3	Small	order	statistics

We	showed	that	the	worst-case	number	 	of	comparisons	used	by	SELECT	to

select	the	 	th	order	statistic	from	 	numbers	satisfies	 	,	but	the
constant	hidden	by	the	 	-notation	is	rather	large.	When	 	is	small	relative	to	 	,	we
can	implement	a	different	procedure	that	uses	SELECT	as	a	subroutine	but	makes
fewer	comparisons	in	the	worst	case.

a.	Describe	an	algorithm	that	uses	 	comparisons	to	find	the	 	th	smallest	of	
elements,	where

Divide	elements	into	pairs	and	compare	each	pair.	Recursively	deal	with	the	set	with	the
smaller	elements	in	each	pair,	and	return	the	 	smallest	elements	by	partition,	then	the	 	th
element	belong	to	the	pairs	that	appeared	in	the	 	smallest	elements.

b.	Show	that,	if	 	,	then	 	.

Suppose	 	,

c.	Show	that	if	 	is	a	constant	less	than	 	,	then	 	.
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d.	Show	that	if	 	for	 	,	then	 	.

9-4	Alternative	analysis	of	randomized	selection

In	this	problem,	we	use	indicator	random	variables	to	analyze	the	RANDOMIZED-
SELECT	procedure	in	a	manner	akin	to	our	analysis	of	RANDOMIZED-QUICKSORT	in
Section	7.4.2.

As	in	the	quicksort	analysis,	we	assume	that	all	elements	are	distinct,	and	we	rename
the	elements	of	the	input	array	 	as	 	,	where	 	is	the	 	th	smallest

element.	Thus,	the	call	RANDOMIZED-SELECT	 	returns	 	.

For	 	,	let

	is	compared	with	 	sometime	during	the	execution	of	the	algorithm	to

find	 	.

a.	Give	an	exact	expression	for	 	.
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b.	Let	 	denote	the	total	number	of	comparisons	between	elements	of	array	 	when
finding	 	.	Show	that

c.	Show	that	 	.

Based	on	StackExchange,

And
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Therefore	 	.

d.	Conclude	that,	assuming	all	elements	of	array	 	are	distinct,	RANDOMIZED-

SELECT	runs	in	expected	time	 	.

	.
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10	Elementary	Data	Structures
10.1	Stacks	and	queues
10.2	Linked	lists
10.3	Implementing	pointers	and	objects
10.4	Representing	rooted	trees
Problems
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10.1	Stacks	and	queues

10.1-1

Using	Figure	10.1	as	a	model,	illustrate	the	result	of	each	operation	in	the	sequence

PUSH	 	,	PUSH	 	,	PUSH	 	,	POP	 	,	PUSH	 	,	and	POP

	on	an	initially	empty	stack	 	stored	in	array	 	.
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10.1-2

10.1	Stacks	and	queues

194



n	=	100

a	=	[-1	for	_	in	xrange(n)]

class	Stack1:

				def	__init__(self):

								self.top	=	-1

				def	is_empty(self):

								return	self.top	==	-1

				def	push(self,	x):

								global	a

								self.top	+=	1

								a[self.top]	=	x

				def	pop(self):

								global	a

								self.top	-=	1

								return	a[self.top	+	1]

class	Stack2:

				def	__init__(self):

								self.top	=	n

				def	is_empty(self):

								return	self.top	==	n

				def	push(self,	x):

								global	a

								self.top	-=	1

								a[self.top]	=	x

				def	pop(self):

								global	a

								self.top	+=	1

								return	a[self.top	-	1]

10.1-3

Using	Figure	10.2	as	a	model,	illustrate	the	result	of	each	operation	in	the	sequence

ENQUEUE	 	,	ENQUEUE	 	,	ENQUEUE	 	,	DEQUEUE	 	,

ENQUEUE	 	,	and	DEQUEUE	 	on	an	initially	empty	queue	 	stored	in	array

	.

10.1	Stacks	and	queues

195



Using	Figure	10.2	as	a	model,	illustrate	the	result	of	each	operation	in	the	sequence

ENQUEUE	 	,	ENQUEUE	 	,	ENQUEUE	 	,	DEQUEUE	 	,

ENQUEUE	 	,	and	DEQUEUE	 	on	an	initially	empty	queue	 	stored	in	array

	.
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class	Deque:

				def	__init__(self,	size):

								self.q	=	[-1	for	_	in	xrange(size)]

								self.front	=	0

								self.back	=	0

				def	push_front(self,	x):

								if	(self.back	+	1)	%	len(self.q)	==	self.front:

												raise	Exception('overflow')

								self.front	-=	1

								if	self.front	==	-1:

												self.front	=	len(self.q)	-	1

								self.q[self.front]	=	x

				def	push_back(self,	x):

								if	(self.back	+	1)	%	len(self.q)	==	self.front:

												raise	Exception('overflow')

								self.q[self.back]	=	x

								self.back	+=	1

								if	self.back	==	len(self.q):

												self.back	=	0

				def	pop_front(self):

								if	self.front	==	self.back:

												raise	Exception('underflow')

								x	=	self.q[self.front]

								self.front	+=	1

								if	self.front	==	len(self.q):

												self.front	=	0

								return	x

				def	pop_back(self):

								if	self.front	==	self.back:

												raise	Exception('underflow')

								self.back	-=	1

								if	self.back	==	-1:

												self.back	=	len(self.q)	-	1

								return	self.q[self.back]

10.1-6

Show	how	to	implement	a	queue	using	two	stacks.	Analyze	the	running	time	of	the
queue	operations.

Enqueue:	 	.

Dequeue:	worst	 	,	amortized	 	.
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class	Deque:

				def	__init__(self,	size):

								self.q	=	[-1	for	_	in	xrange(size)]

								self.front	=	0

								self.back	=	0

				def	push_front(self,	x):

								if	(self.back	+	1)	%	len(self.q)	==	self.front:

												raise	Exception('overflow')

								self.front	-=	1

								if	self.front	==	-1:

												self.front	=	len(self.q)	-	1

								self.q[self.front]	=	x

				def	push_back(self,	x):

								if	(self.back	+	1)	%	len(self.q)	==	self.front:

												raise	Exception('overflow')

								self.q[self.back]	=	x

								self.back	+=	1

								if	self.back	==	len(self.q):

												self.back	=	0

				def	pop_front(self):

								if	self.front	==	self.back:

												raise	Exception('underflow')

								x	=	self.q[self.front]

								self.front	+=	1

								if	self.front	==	len(self.q):

												self.front	=	0

								return	x

				def	pop_back(self):

								if	self.front	==	self.back:

												raise	Exception('underflow')

								self.back	-=	1

								if	self.back	==	-1:

												self.back	=	len(self.q)	-	1

								return	self.q[self.back]

10.1-6

Show	how	to	implement	a	queue	using	two	stacks.	Analyze	the	running	time	of	the
queue	operations.

Enqueue:	 	.

Dequeue:	worst	 	,	amortized	 	.
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class	BlackBoxQueue:

				def	__init__(self):

								self.s	=	[]

				def	is_empty(self):

								return	len(self.s)	==	0

				def	enqueue(self,	x):

								self.s.append(x)

				def	dequeue(self):

								x	=	self.s[0]

								del	self.s[0]

								return	x

class	Stack:

				def	__init__(self):

								self.queue_in	=	BlackBoxQueue()

								self.queue_out	=	BlackBoxQueue()

				def	is_empty(self):

								return	self.queue_in.is_empty()

				def	push(self,	x):

								self.queue_in.enqueue(x)

				def	pop(self):

								if	self.queue_in.is_empty():

												raise	Exception('underflow')

								while	True:

												x	=	self.queue_in.dequeue()

												if	self.queue_in.is_empty():

																break

												self.queue_out.enqueue(x)

								self.queue_in,	self.queue_out	=	self.queue_out,	self.queue_in

								return	x

10.1	Stacks	and	queues

200



10.2	Linked	lists

10.2-1

Can	you	implement	the	dynamic-set	operation	INSERT	on	a	singly	linked	list	in	
time?	How	about	DELETE?

INSERT:	 	.

DELETE:	 	.

class	LinkListNode:

				def	__init__(self,	value):

								self.value	=	value

								self.next	=	None

def	to_str(head):

				values	=	[]

				head	=	head.next

				while	head	is	not	None:

								values.append(head.value)

								head	=	head.next

				return	'	'.join(map(str,	values))

def	insert(head,	x):

				new_node	=	LinkListNode(x)

				new_node.next	=	head.next

				head.next	=	new_node

def	delete(head,	x):

				while	head	is	not	None:

								if	head.next	is	not	None	and	head.next.value	==	x:

												head.next	=	head.next.next

								else:

												head	=	head.next

10.2-2

Implement	a	stack	using	a	singly	linked	list	 	.	The	operations	PUSH	and	POP	should

still	take	 	time.
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class	LinkListNode:

				def	__init__(self,	value):

								self.value	=	value

								self.next	=	None

def	push(head,	x):

				new_node	=	LinkListNode(x)

				new_node.next	=	head.next

				head.next	=	new_node

def	pop(head):

				if	head.next	is	None:

								return	None

				x	=	head.next.value

				head.next	=	head.next.next

				return	x

10.2-3

Implement	a	queue	by	a	singly	linked	list	 	.	The	operations	ENQUEUE	and

DEQUEUE	should	still	take	 	time.
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class	LinkListNode:

				def	__init__(self,	value):

								self.value	=	value

								self.next	=	None

class	Queue:

				def	__init__(self):

								self.head	=	None

								self.tail	=	LinkListNode(None)

				def	enqueue(self,	x):

								new_node	=	LinkListNode(x)

								if	self.tail.next	is	None:

												self.head	=	new_node

												self.tail.next	=	self.head

								else:

												self.head.next	=	new_node

												self.head	=	new_node

				def	dequeue(self):

								if	self.tail.next	is	None:

												return	None

								x	=	self.tail.next.value

								self.tail	=	self.tail.next

								return	x

10.2-4

As	written,	each	loop	iteration	in	the	LIST-SEARCH'	procedure	requires	two	tests:	one

for	 	and	one	for	 	.	Show	how	to	eliminate	the	test	for

	in	each	iteration.
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class	LinkListNode:

				def	__init__(self,	key):

								self.key	=	key

								self.next	=	None

								self.prev	=	None

class	LinkList:

				def	__init__(self):

								self.nil	=	LinkListNode(None)

								self.nil.next	=	self.nil

								self.nil.prev	=	self.nil

				def	insert(self,	x):

								x	=	LinkListNode(x)

								x.next	=	self.nil.next

								x.prev	=	self.nil

								x.next.prev	=	x

								x.prev.next	=	x

				def	search(self,	k):

								self.nil.key	=	k

								x	=	self.nil.next

								while	x.key	!=	k:

												x	=	x.next

								if	x	==	self.nil:

												return	None

								return	x

10.2-5

Implement	the	dictionary	operations	INSERT,	DELETE,	and	SEARCH	using	singly
linked,	circular	lists.	What	are	the	running	times	of	your	procedures?

INSERT	 	,	DELETE	 	,	SEARCH	 	.
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class	LinkListNode:

				def	__init__(self,	key,	value):

								self.key	=	key

								self.value	=	value

								self.next	=	None

								self.prev	=	None

class	Dict:

				def	__init__(self):

								self.nil	=	LinkListNode(None,	None)

								self.nil.next	=	self.nil

								self.nil.prev	=	self.nil

				def	insert(self,	key,	value):

								x	=	self.search_node(key)

								if	x	is	None:

												x	=	LinkListNode(key,	value)

												x.next	=	self.nil.next

												x.prev	=	self.nil

												x.next.prev	=	x

												x.prev.next	=	x

								else:

												x.value	=	value

				def	delete(self,	key):

								x	=	self.search_node(key)

								if	x	is	not	None:

												x.next.prev	=	x.prev

												x.prev.next	=	x.next

				def	search_node(self,	key):

								self.nil.key	=	key

								x	=	self.nil.next

								while	x.key	!=	key:

												x	=	x.next

								if	x	==	self.nil:

												return	None

								return	x

				def	search(self,	key):

								x	=	self.search_node(key)

								if	x	is	None:

												return	None

								return	x.value

10.2-6
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The	dynamic-set	operation	UNION	takes	two	disjoint	sets	 	and	 	as	input,	and	it

returns	a	set	 	consisting	of	all	the	elements	of	 	and	 	.	The	sets	

and	 	are	usually	destroyed	by	the	operation.	Show	how	to	support	UNION	in	
time	using	a	suitable	list	data	structure.

class	LinkListNode:

				def	__init__(self,	key):

								self.key	=	key

								self.next	=	None

								self.prev	=	None

class	LinkList:

				def	__init__(self):

								self.nil	=	LinkListNode(None)

								self.nil.next	=	self.nil

								self.nil.prev	=	self.nil

				def	insert(self,	key):

								x	=	LinkListNode(key)

								x.next	=	self.nil.next

								x.prev	=	self.nil

								x.next.prev	=	x

								x.prev.next	=	x

				def	values(self):

								values	=	[]

								x	=	self.nil.next

								while	x	!=	self.nil:

												values.append(x.key)

												x	=	x.next

								return	values

def	union(list_1,	list_2):

				list_1.nil.next.prev	=	list_2.nil.prev

				list_2.nil.prev.next	=	list_1.nil.next

				list_1.nil.next	=	list_2.nil.next

				list_2.nil.next.prev	=	list_1.nil

				return	list_1

10.2-7

Give	a	 	-time	nonrecursive	procedure	that	reverses	a	singly	linked	list	of	
elements.	The	procedure	should	use	no	more	than	constant	storage	beyond	that
needed	for	the	list	itself.
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class	LinkListNode:

				def	__init__(self,	value):

								self.value	=	value

								self.next	=	None

def	to_list(head):

				values	=	[]

				head	=	head.next

				while	head	is	not	None:

								values.append(head.value)

								head	=	head.next

				return	values

def	insert(head,	x):

				new_node	=	LinkListNode(x)

				new_node.next	=	head.next

				head.next	=	new_node

def	reverse(head):

				prev	=	None

				node	=	head.next

				while	node	is	not	None:

								next_node	=	node.next

								node.next	=	prev

								prev	=	node

								node	=	next_node

				head.next	=	prev

10.2-8	

Explain	how	to	implement	doubly	linked	lists	using	only	one	pointer	value	 	per
item	instead	of	the	usual	two	(	 	and	 	).	Assume	all	pointer	values	can	be

interpreted	as	 	-bit	integers,	and	define	 	to	be	 	XOR	
,	the	 	-bit	"exclusive-or"	of	 	and	 	.	(The	value	NIL	is	represented	by
0.)	Be	sure	to	describe	what	information	you	need	to	access	the	head	of	the	list.	Show
how	to	implement	the	SEARCH,	INSERT,	and	DELETE	operations	on	such	a	list.	Also

show	how	to	reverse	such	a	list	in	 	time.

	XOR	

	XOR	
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Reverse:

	XOR	 	XOR	

	XOR	 	XOR	
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10.3	Implementing	pointers	and	objects

10.3-1

Draw	a	picture	of	the	sequence	 	stored	as	a	doubly	linked	list
using	the	multiple-array	representation.	Do	the	same	for	the	single-array
representation.

10.3-2

Write	the	procedures	ALLOCATE-OBJECT	and	FREE-OBJECT	for	a	homogeneous
collection	of	objects	implemented	by	the	single-array	representation.

10.3-3

Why	don’t	we	need	to	set	or	reset	the	prev	attributes	of	objects	in	the	implementation	of
the	ALLOCATE-OBJECT	and	FREE-OBJECT	procedures?

Because	we	do	not	need	to	know	prev.

10.3-4

It	is	often	desirable	to	keep	all	elements	of	a	doubly	linked	list	compact	in	storage,
using,	for	example,	the	first	 	index	locations	in	the	multiple-array	representation.	(This
is	the	case	in	a	paged,	virtual-memory	computing	environment.)	Explain	how	to
implement	the	procedures	ALLOCATE-OBJECT	and	FREE-OBJECT	so	that	the
representation	is	compact.	Assume	that	there	are	no	pointers	to	elements	of	the	linked
list	outside	the	list	itself.

See	10.3-5.

10.3-5
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Let	 	be	a	doubly	linked	list	of	length	 	stored	in	arrays	 	,	 	,	and	 	of
length	 	.	Suppose	that	these	arrays	are	managed	by	ALLOCATE-OBJECT	and
FREE-OBJECT	procedures	that	keep	a	doubly	linked	free	list	 	.	Suppose	further	that
of	the	 	items,	exactly	 	are	on	list	 	and	 	are	on	the	free	list.	Write	a

procedure	COMPACTIFY-LIST	 	that,	given	the	list	 	and	the	free	list	 	,	moves

the	items	in	 	so	that	they	occupy	array	positions	 	and	adjusts	the	free	list

	so	that	it	remains	correct,	occupying	array	positions	 	.	The

running	time	of	your	procedure	should	be	 	,	and	it	should	use	only	a	constant
amount	of	extra	space.	Argue	that	your	procedure	is	correct.

For	the	 	th	element,	if	it	is	not	in	position	 	and	position	 	is	not	free,	we	move	the	element
at	position	 	to	a	new	allocated	position,	and	move	the	 	th	element	to	position	 	.
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10.4	Representing	rooted	trees

10.4-1

Draw	the	binary	tree	rooted	at	index	6	that	is	represented	by	the	following	attributes:

index key left right

1 12 7 3

2 15 8 NIL

3 4 10 NIL

4 10 5 9

5 2 NIL NIL

6 18 1 4

7 7 NIL NIL

8 14 6 2

9 21 NIL NIL

10 5 NIL NIL
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10.4-2

Write	an	 	-time	recursive	procedure	that,	given	an	 	-node	binary	tree,	prints	out
the	key	of	each	node	in	the	tree.

class	TreeNode:

				def	__init__(self,	value,	left=None,	right=None):

								self.value	=	value

								self.left	=	left

								self.right	=	right

def	print_tree(node):

				if	node	is	not	None:

								print(node.value)

								print_tree(node.left)

								print_tree(node.right)

10.4-3
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Write	an	O	 	-time	nonrecursive	procedure	that,	given	an	 	-node	binary	tree,	prints
out	the	key	of	each	node	in	the	tree.	Use	a	stack	as	an	auxiliary	data	structure.

class	TreeNode:

				def	__init__(self,	value,	left=None,	right=None):

								self.value	=	value

								self.left	=	left

								self.right	=	right

def	print_tree(node):

				stack	=	[node]

				while	len(stack)	>	0:

								node	=	stack[-1]

								del	stack[-1]

								if	node	is	not	None:

												print(node.value)

												stack.append(node.left)

												stack.append(node.right)

10.4-4

Write	an	 	-time	procedure	that	prints	all	the	keys	of	an	arbitrary	rooted	tree	with	
nodes,	where	the	tree	is	stored	using	the	left-child,	right-sibling	representation.

class	TreeNode:

				def	__init__(self,	value,	parent=None,	left=None,	right=None):

								self.value	=	value

								self.parent	=	parent

								self.left_child	=	left

								self.right_sibling	=	right

def	print_tree(node):

				if	node	is	not	None:

								while	node.parent	is	not	None:

												node	=	node.parent

								while	node	is	not	None:

												print(node.value)

												sibling	=	node.right_sibling

												while	sibling	is	not	None:

																print(sibling.value)

																sibling	=	sibling.right_sibling

												node	=	node.left_child

10.4-5	
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Write	an	 	-time	nonrecursive	procedure	that,	given	an	 	-node	binary	tree,	prints
out	the	key	of	each	node.	Use	no	more	than	constant	extra	space	outside	of	the	tree
itself	and	do	not	modify	the	tree,	even	temporarily,	during	the	procedure.

class	TreeNode:

				def	__init__(self,	value,	left=None,	right=None):

								self.value	=	value

								self.parent	=	None

								self.left	=	left

								self.right	=	right

								if	left	is	not	None:

												left.parent	=	self

								if	right	is	not	None:

												right.parent	=	self

def	print_tree(node):

				prev	=	None

				while	node	is	not	None:

								if	node.parent	==	prev:

												print(node.value)

												prev	=	node

												if	node.left	is	None:

																node	=	node.parent

												else:

																node	=	node.left

								elif	node.left	==	prev:

												prev	=	node

												if	node.right	is	None:

																node	=	node.parent

												else:

																node	=	node.right

								else:

												prev	=	node

												node	=	node.parent

10.4-6	

The	left-child,	right-sibling	representation	of	an	arbitrary	rooted	tree	uses	three	pointers
in	each	node:	left-child,	right-sibling,	and	parent.	From	any	node,	its	parent	can	be
reached	and	identified	in	constant	time	and	all	its	children	can	be	reached	and	identified
in	time	linear	in	the	number	of	children.	Show	how	to	use	only	two	pointers	and	one
boolean	value	in	each	node	so	that	the	parent	of	a	node	or	all	of	its	children	can	be
reached	and	identified	in	time	linear	in	the	number	of	children.

Use	boolean	to	identify	the	last	sibling,	and	the	last	sibling's	right-sibling	points	to	the	parent.
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Problems

10-1	Comparisons	among	lists

For	each	of	the	four	types	of	lists	in	the	following	table,	what	is	the	asymptotic	worst-
case	running	time	for	each	dynamic-set	operation	listed?

unsorted,
singly	linked

sorted,
singly
linked

unsorted,
doubly	linked

sorted,
doubly
linked

SEARCH	

INSERT	

DELETE	

SUCCESSOR

PREDECESSOR

MINIMUM	

MAXIMUM	

10-2	Mergeable	heaps	using	linked	lists

A	mergeable	heap	supports	the	following	operations:	MAKE-HEAP	(which	creates	an
empty	mergeable	heap),	INSERT,	MINIMUM,	EXTRACT-MIN,	and	UNION.	Show	how
to	implement	mergeable	heaps	using	linked	lists	in	each	of	the	following	cases.	Try	to
make	each	operation	as	efficient	as	possible.	Analyze	the	running	time	of	each
operation	in	terms	of	the	size	of	the	dynamic	set(s)	being	operated	on.

a.	Lists	are	sorted.

MAKE-HEAP	 	,	INSERT	 	,	MINIMUM	 	,	EXTRACT-MIN	 	,	UNION

	.

class	LinkedListNode:

				def	__init__(self,	value):

								self.value	=	value
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								self.next	=	None

class	MergeableHeap:

				def	__init__(self):

								self.head	=	None

				def	to_list(self):

								values	=	[]

								x	=	self.head

								while	x	is	not	None:

												values.append(x.value)

												x	=	x.next

								return	values

				def	insert(self,	value):

								new_node	=	LinkedListNode(value)

								if	self.head	is	None:

												self.head	=	new_node

								else:

												if	value	<	self.head.value:

																new_node.next	=	self.head

																self.head	=	new_node

												else:

																x	=	self.head

																while	x.next	is	not	None	and	x.next.value	<	value:

																				x	=	x.next

																if	x.next	is	None	or	x.next	<	value:

																				new_node.next	=	x.next

																				x.next	=	new_node

				def	minimum(self):

								if	self.head	is	None:

												return	None

								return	self.head.value

				def	extract_min(self):

								if	self.head	is	None:

												return	None

								x	=	self.head.value

								self.head	=	self.head.next

								return	x

				def	union(self,	other):

								head	=	LinkedListNode(None)

								x	=	head

								while	self.head	is	not	None	or	other.head	is	not	None:

												if	other.head	is	None:

																x.next	=	self.head

																self.head	=	self.head.next

												elif	self.head	is	None:

																x.next	=	other.head

																other.head	=	other.head.next
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												elif	self.head.value	<=	other.head.value:

																x.next	=	self.head

																self.head	=	self.head.next

												else:

																x.next	=	other.head

																other.head	=	other.head.next

												if	x.next.value	!=	x.value:

																x	=	x.next

								x.next	=	None

								self.head	=	head.next

b.	Lists	are	unsorted.

MAKE-HEAP	 	,	INSERT	 	,	MINIMUM	 	,	EXTRACT-MIN	 	,	UNION

	.

class	LinkedListNode:

				def	__init__(self,	value):

								self.value	=	value

								self.next	=	None

class	MergeableHeap:

				def	__init__(self):

								self.head	=	None

				def	to_list(self):

								values	=	[]

								x	=	self.head

								while	x	is	not	None:

												values.append(x.value)

												x	=	x.next

								return	values

				def	insert(self,	value):

								x	=	LinkedListNode(value)

								if	self.head	is	None:

												self.head	=	x

								else:

												x.next	=	self.head

												self.head	=	x

				def	minimum(self):

								if	self.head	is	None:

												return	None

								min_val	=	self.head.value

								x	=	self.head.next

								while	x	is	not	None:

												min_val	=	min(min_val,	x.value)

												x	=	x.next
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								return	min_val

				def	delete(self,	value):

								prev	=	None

								x	=	self.head

								while	x	is	not	None:

												if	x.value	==	value:

																if	x	==	self.head:

																				self.head	=	self.head.next

																prev.next	=	x.next

												prev	=	x

												x	=	x.next

				def	extract_min(self):

								x	=	self.minimum()

								self.delete(x)

								return	x

				def	union(self,	other):

								if	self.head	is	None:

												self.head	=	other.head

								else:

												x	=	self.head

												while	x.next	is	not	None:

																x	=	x.next

												x.next	=	other.head

c.	Lists	are	unsorted,	and	dynamic	sets	to	be	merged	are	disjoint.

Same	as	b.

10-3	Searching	a	sorted	compact	list
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a.	Suppose	that	COMPACT-LIST-SEARCH	 	takes	 	iterations	of	the	while

loop	of	lines	2–8.	Argue	that	COMPACT-LIST-SEARCH'	 	returns	the	same
answer	and	that	the	total	number	of	iterations	of	both	the	for	and	while	loops	within
COMPACT-LIST-SEARCH'	is	at	least	 	.

b.	Argue	that	the	expected	running	time	of	COMPACT-LIST-SEARCH'	 	is

	.

c.	Show	that	 	.

d.	Show	that	 	.

e.	Prove	that	 	.

f.	Show	that	COMPACT-LIST-SEARCH'	 	runs	in	 	expected
time.

g.	Conclude	that	COMPACT-LIST-SEARCH	runs	in	 	expected	time.

h.	Why	do	we	assume	that	all	keys	are	distinct	in	COMPACT-LIST-SEARCH?	Argue
that	random	skips	do	not	necessarily	help	asymptotically	when	the	list	contains
repeated	key	values.
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11	Hash	Tables
11.1	Direct-address	tables
11.2	Hash	tables
11.3	Hash	functions
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11.1	Direct-address	tables

11.1-1

Suppose	that	a	dynamic	set	 	is	represented	by	a	direct-address	table	 	of	length	 	.
Describe	a	procedure	that	finds	the	maximum	element	of	 	.	What	is	the	worst-case
performance	of	your	procedure?

Traverse	the	table,	 	.

11.1-2

A	bit	vector	is	simply	an	array	of	bits	(0s	and	1s).	A	bit	vector	of	length	 	takes	much
less	space	than	an	array	of	 	pointers.	Describe	how	to	use	a	bit	vector	to	represent	a
dynamic	set	of	distinct	elements	with	no	satellite	data.	Dictionary	operations	should	run

in	 	time.

Set	the	corresponding	bit	to	0	or	1.

11.1-3

Suggest	how	to	implement	a	direct-address	table	in	which	the	keys	of	stored	elements
do	not	need	to	be	distinct	and	the	elements	can	have	satellite	data.	All	three	dictionary

operations	(INSERT,	DELETE,	and	SEARCH)	should	run	in	 	time.	(Don't	forget
that	DELETE	takes	as	an	argument	a	pointer	to	an	object	to	be	deleted,	not	a	key.)

Each	key	contains	a	linked	list.

11.1-4	

We	wish	to	implement	a	dictionary	by	using	direct	addressing	on	a	huge	array.	At	the
start,	the	array	entries	may	contain	garbage,	and	initializing	the	entire	array	is
impractical	because	of	its	size.	Describe	a	scheme	for	implementing	a	direct-address

dictionary	on	a	huge	array.	Each	stored	object	should	use	 	space;	the	operations

SEARCH,	INSERT,	and	DELETE	should	take	 	time	each;	and	initializing	the	data

structure	should	take	 	time.
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Use	an	additional	array,	treated	somewhat	like	a	stack	whose	size	is	the	number	of	keys
actually	stored	in	the	dictionary.	When	INSERT,	the	value	in	the	huge	array	is	set	to	the	top
index	of	the	additional	array,	and	the	additional	array	records	the	corresponding	index	in	the
huge	array	(and	the	satellite	data).	When	DELETE,	set	the	value	in	the	huge	array	to	-1.

class	Item:

				def	__init__(self):

								self.key	=	id(self)	//	64	%	10007

								self.value	=	id(self)

huge_array	=	[random.randint(0,	10000)	for	_	in	range(10007)]

additional_array	=	[]

def	insert(x):

				global	huge_array

				global	additional_array

				huge_array[x.key]	=	len(additional_array)

				additional_array.append((x.key,	x))

def	delete(x):

				global	huge_array

				huge_array[x.key]	=	-1

def	search(k):

				global	huge_array

				global	additional_array

				idx	=	huge_array[k]

				if	0	<=	idx	<	len(additional_array):

								if	additional_array[idx][0]	==	k:

												return	additional_array[idx][1]

				return	None
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11.2	Hash	tables

11.2-1

Suppose	we	use	a	hash	function	 	to	hash	 	distinct	keys	into	an	array	 	of	length	
.	Assuming	simple	uniform	hashing,	what	is	the	expected	number	of	collisions?	More

precisely,	what	is	the	expected	cardinality	of	 	?

11.2-2

Demonstrate	what	happens	when	we	insert	the	keys	5,	28,	19,	15,	20,	33,	12,	17,	10
into	a	hash	table	with	collisions	resolved	by	chaining.	Let	the	table	have	9	slots,	and	let

the	hash	function	be	 	mod	9.
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11.2-3

Professor	Marley	hypothesizes	that	he	can	obtain	substantial	performance	gains	by
modifying	the	chaining	scheme	to	keep	each	list	in	sorted	order.	How	does	the
professor's	modification	affect	the	running	time	for	successful	searches,	unsuccessful
searches,	insertions,	and	deletions?

Successful	searches:	no	difference,	 	.

Unsuccessful	searches:	faster	but	still	 	.

Insertions:	same	as	successful	searches,	 	.

Deletions:	same	as	successful	searches,	 	.

11.2	Hash	tables

225



11.2-4

Suggest	how	to	allocate	and	deallocate	storage	for	elements	within	the	hash	table	itself
by	linking	all	unused	slots	into	a	free	list.	Assume	that	one	slot	can	store	a	flag	and
either	one	element	plus	a	pointer	or	two	pointers.	All	dictionary	and	free-list	operations

should	run	in	 	expected	time.	Does	the	free	list	need	to	be	doubly	linked,	or	does
a	singly	linked	free	list	suffice?

Flag:	free	or	used.

If	the	slot	is	free,	it	contains	two	pointers	point	to	the	previous	and	the	next	free	slots.

If	the	slot	is	used,	it	contains	an	element	the	the	pointer	to	the	next	element	with	the	same
key.

We	have	to	use	a	doubly	linked	list	since	we	need	 	deletion.

11.2-5

Suppose	that	we	are	storing	a	set	of	 	keys	into	a	hash	table	of	size	 	.	Show	that	if

the	keys	are	drawn	from	a	universe	 	with	 	,	then	 	has	a	subset	of	size
	consisting	of	keys	that	all	hash	to	the	same	slot,	so	that	the	worst-case	searching

time	for	hashing	with	chaining	is	 	.

Suppose	the	 	slots	contains	at	most	 	elements,	then	the	remaining	slot	should

have	 	 	 	
elements,	thus	 	has	a	subset	of	size	 	.

11.2-6

Suppose	we	have	stored	 	keys	in	a	hash	table	of	size	 	,	with	collisions	resolved	by
chaining,	and	that	we	know	the	length	of	each	chain,	including	the	length	 	of	the
longest	chain.	Describe	a	procedure	that	selects	a	key	uniformly	at	random	from	among

the	keys	in	the	hash	table	and	returns	it	in	expected	time	 	.

Select	a	random	key	 	and	select	a	random	number	 	such	that	 	.	If	 	,
the	selected	element	is	returned,	otherwise	repeat	the	procedure	until	we	find	an	existing
element.
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When	we	find	an	existing	element,	we	need	 	time	to	iterate	to	the	element,	thus	the
expected	time	is:

11.2	Hash	tables
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11.3	Hash	functions

11.3-1

Suppose	we	wish	to	search	a	linked	list	of	length	 	,	where	each	element	contains	a

key	 	along	with	a	hash	value	 	.	Each	key	is	a	long	character	string.	How	might
we	take	advantage	of	the	hash	values	when	searching	the	list	for	an	element	with	a
given	key?

Compare	the	long	character	strings	only	when	they	have	the	same	hash	values.

11.3-2

Suppose	that	we	hash	a	string	of	 	characters	into	 	slots	by	treating	it	as	a	radix-128
number	and	then	using	the	division	method.	We	can	easily	represent	the	number	 	as
a	32-bit	computer	word,	but	the	string	of	 	characters,	treated	as	a	radix-128	number,
takes	many	words.	How	can	we	apply	the	division	method	to	compute	the	hash	value	of
the	character	string	without	using	more	than	a	constant	number	of	words	of	storage
outside	the	string	itself?

We	should	calculate

It	cannot	be	calculated	with	a	constant	number	of	words	of	storage	because	the	sum	may
exceed	2^32	-	1.	However,	Equation	31.18	suggests

It	can	be	calculated	with	a	loop.

11.3	Hash	functions
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sum	:=	0

for	i	=	1	to	r

				sum	:=	((sum	%	m)	*	(128	%	m)	%	m	+	s[i]	%	m)	%	m

And	it	fits	in	a	word	now.	Futhermore,	we	may	apply	Equation	31.18	again	and	get

sum	:=	0

for	i	=	1	to	r

				sum	:=	(sum	*	128	+	s[i])	%	m

Use		sum		as	the	key.

11.3-3

Consider	a	version	of	the	division	method	in	which	 	,	where

	and	 	is	a	character	string	interpreted	in	radix	 	.	Show	that	if	we	can
derive	string	 	from	string	 	by	permuting	its	characters,	then	 	and	 	hash	to	the
same	value.	Give	an	example	of	an	application	in	which	this	property	would	be
undesirable	in	a	hash	function.

Thus	the	hashing	is	equivalent	to	 	,	the	strings	with	different	permutations
will	have	the	same	hashing	value.

11.3-4

Consider	a	hash	table	of	size	 	and	a	corresponding	hash	function

	for	 	.	Compute	the	locations	to	which
the	keys	61,	62,	63,	64,	and	65	are	mapped.
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11.3-5	

Define	a	family	 	of	hash	functions	from	a	finite	set	 	to	a	finite	set	 	to	be	 	-
universal	if	for	all	pairs	of	distinct	elements	 	and	 	in	 	,

	,

where	the	probability	is	over	the	choice	of	the	hash	function	 	drawn	at	random	from
the	family	 	.	Show	that	an	 	-universal	family	of	hash	functions	must	have

	.

Suppose	 	is	the	number	of	elements	in	slot	 	,	then	the	total	number	of	collisions	is:

Suppose	 	and	

11.3	Hash	functions
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Therefore	 	.

11.3-6	

Let	 	be	the	set	of	 	-tuples	of	values	drawn	from	 	,	and	let	 	,	where	 	is

prime.	Define	the	hash	function	 	:	 	for	 	on	an	input	 	-tuple

	from	 	as

	,

and	let	 	.	Argue	that	 	is	 	-universal	according	to
the	definition	of	 	-universal	in	Exercise	11.3-5.
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11.4	Open	addressing

11.4-1

Consider	inserting	the	keys	 	into	a	hash	table	of

length	 	using	open	addressing	with	the	auxiliary	hash	function	 	.
Illustrate	the	result	of	inserting	these	keys	using	linear	probing,	using	quadratic	probing

with	 	and	 	,	and	using	double	hashing	with	 	and

	.
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m	=	11

class	LinearProbing:

				def	__init__(self):

								global	m

								self.slots	=	[None	for	_	in	xrange(m)]

				def	insert(self,	key):

								global	m

								i	=	0

								while	True:

												pos	=	(key	+	i)	%	m

												if	self.slots[pos]	is	None:

																break

												i	+=	1

								self.slots[pos]	=	key

class	QuadraticProbing:

				def	__init__(self):

								global	m

								self.slots	=	[None	for	_	in	xrange(m)]

				def	insert(self,	key):

								global	m

								i	=	0

								while	True:

												pos	=	(key	+	i	+	3	*	i	*	i)	%	m

												if	self.slots[pos]	is	None:

																break

												i	+=	1

								self.slots[pos]	=	key

class	DoubleHashing:

				def	__init__(self):

								global	m

								self.slots	=	[None	for	_	in	xrange(m)]

				def	insert(self,	key):

								global	m

								i	=	0

								h2	=	1	+	(key	%	(m	-	1))

								while	True:

												pos	=	(key	+	i	*	h2)	%	m

												if	self.slots[pos]	is	None:

																break

												i	+=	1

								self.slots[pos]	=	key

11.4	Open	addressing
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Linear:	[22,	88,	None,	None,	4,	15,	28,	17,	59,	31,	10]

Quadratic:	[22,	None,	88,	17,	4,	None,	28,	59,	15,	31,	10]

Double:	[22,	None,	59,	17,	4,	15,	28,	88,	None,	31,	10]

11.4-2

Write	pseudocode	for	HASH-DELETE	as	outlined	in	the	text,	and	modify	HASHINSERT
to	handle	the	special	value	DELETED.

m	=	5

class	LinearProbing:

				def	__init__(self):

								global	m

								self.slots	=	[None	for	_	in	xrange(m)]

				def	insert(self,	key):

								global	m

								i	=	0

								while	True:

												pos	=	(key	+	i)	%	m

												if	self.slots[pos]	is	None	or	self.slots[pos]	==	'[Deleted]':

																break

												i	+=	1

								self.slots[pos]	=	key

				def	delete(self,	key):

								global	m

								i	=	0

								while	True:

												pos	=	(key	+	i)	%	m

												if	self.slots[pos]	is	None:

																break

												if	self.slots[pos]	==	key:

																self.slots[pos]	=	'[Deleted]'

																break

												i	+=	1

11.4-3

Consider	an	open-address	hash	table	with	uniform	hashing.	Give	upper	bounds	on	the
expected	number	of	probes	in	an	unsuccessful	search	and	on	the	expected	number	of
probes	in	a	successful	search	when	the	load	factor	is	3/4	and	when	it	is	7/8.
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	,	unsuccessful:	 	probes,	successful:	
probes.

	,	unsuccessful:	 	probes,	successful:	
probes.

11.4-4	

Suppose	that	we	use	double	hashing	to	resolve	collisions—that	is,	we	use	the	hash

function	 	.	Show	that	if	 	and	 	have

greatest	common	divisor	 	for	some	key	 	,	then	an	unsuccessful	search	for	key

	examines	 	th	of	the	hash	table	before	returning	to	slot	 	.	Thus,	when

	,	so	that	 	and	 	are	relatively	prime,	the	search	may	examine	the	entire
hash	table.

Suppose	 	,	the	LCM	 	.

Since	 	,	then	 	,	therefore

	,	which	means	 	has	a	period

of	 	.

11.4-5	

Consider	an	open-address	hash	table	with	a	load	factor	 	.	Find	the	nonzero	value	
for	which	the	expected	number	of	probes	in	an	unsuccessful	search	equals	twice	the
expected	number	of	probes	in	a	successful	search.	Use	the	upper	bounds	given	by
Theorems	11.6	and	11.8	for	these	expected	numbers	of	probes.
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11.5	Perfect	hashing

11.5-1	

Suppose	that	we	insert	 	keys	into	a	hash	table	of	size	 	using	open	addressing	and

uniform	hashing.	Let	 	be	the	probability	that	no	collisions	occur.	Show	that

	.

Based	on	equation	(3.12),	 	,

11.5	Perfect	hashing
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Problems

11-1	Longest-probe	bound	for	hashing

Suppose	that	we	use	an	open-addressed	hash	table	of	size	 	to	store	
items.

a.	Assuming	uniform	hashing,	show	that	for	 	,	the	probability	is	at	most

	that	the	 	th	insertion	requires	strictly	more	than	 	probes.

b.	Show	that	for	 	,	the	probability	is	 	that	the	 	th	insertion

requires	more	than	 	probes.

Let	the	random	variable	 	denote	the	number	of	probes	required	by	the	 	th	insertion.

You	have	shown	in	part	(b)	that	 	.	Let	the	random

variable	 	denote	the	maximum	number	of	probes	required	by	any
of	the	 	insertions.

c.	Show	that	 	.

d.	Show	that	the	expected	length	 	of	the	longest	probe	sequence	is	 	.
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11-2	Slot-size	bound	for	chaining

Suppose	that	we	have	a	hash	table	with	 	slots,	with	collisions	resolved	by	chaining,
and	suppose	that	 	keys	are	inserted	into	the	table.	Each	key	is	equally	likely	to	be
hashed	to	each	slot.	Let	 	be	the	maximum	number	of	keys	in	any	slot	after	all	the

keys	have	been	inserted.	Your	mission	is	to	prove	an	 	upper	bound

on	 	,	the	expected	value	of	 	.

a.	Argue	that	the	probability	 	that	exactly	 	keys	hash	to	a	particular	slot	is	given	by

	.

Obviously.

b.	Let	 	be	the	probability	that	 	,	that	is,	the	probability	that	the	slot	containing

the	most	keys	contains	 	keys.	Show	that	 	.

	is	the	probability	that	at	least	one	slot	contains	 	keys,	thus	 	.

c.	Use	Stirling's	approximation,	equation	(3.18),	to	show	that	 	.
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d.	Show	that	there	exists	a	constant	 	such	that	 	for

	.	Conclude	that	 	for	 	.

The	maximum	of	 	is	 	,	and	converge	to	 	when	 	.
For	a	large	 	,	if	 	,	the	first	term	is	negative	and

e.	Argue	that

	.

Conclude	that	 	.

Problems

239



11-3	Quadratic	probing

Problems
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Suppose	that	we	are	given	a	key	 	to	search	for	in	a	hash	table	with	positions

	,	and	suppose	that	we	have	a	hash	function	 	mapping	the	key

space	into	the	set	 	.	The	search	scheme	is	as	follows:

1.	 Compute	the	value	 	,	and	set	 	.

2.	 Probe	in	position	 	for	the	desired	key	 	.	If	you	find	it,	or	if	this	position	is	empty,
terminate	the	search.

3.	 Set	 	.	If	 	now	equals	 	,	the	table	is	full,	so	terminate	the	search.

Otherwise,	set	 	,	and	return	to	step	2.

Assume	that	 	is	a	power	of	2.

a.	Show	that	this	scheme	is	an	instance	of	the	general	"quadratic	probing"	scheme	by
exhibiting	the	appropriate	constants	 	and	 	for	equation	(11.5).

The	 	th	probing	is	equivalent	to	 	,	thus	 	,	 	.

b.	Prove	that	this	algorithm	examines	every	table	position	in	the	worst	case.

Suppose	there	are	two	probing	 	and	 	,	and	 	.

Suppose	the	two	probing	examine	the	same	position,	then:

Since	 	,	then	 	.

Note	that	 	is	a	power	of	2.

If	 	and	 	are	both	even	or	both	odd,	then	only	 	could	be	even,	since	 	,

	,	thus	 	could	not	be	a	factor	of	 	.

If	one	of	 	and	 	is	odd	and	the	other	is	even,	then	only	 	could	be	even,	since

	,	 	,	thus	 	could	not	be	a	factor	of	 	.

Therefore	 	and	 	could	not	probing	the	same	position,	this	algorithm	examines	every	table
position	in	the	worst	case.

11-4	Hashing	and	authentication
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Let	 	be	a	class	of	hash	functions	in	which	each	hash	function	 	maps	the

universe	 	of	keys	to	 	.	We	say	that	 	is	k-universal	if,	for	every

fixed	sequence	of	 	distinct	keys	 	and	for	any	 	chosen	at

random	from	 	,	the	sequence	 	is	equally	likely	to

be	any	of	the	 	sequences	of	length	 	with	elements	drawn	from

	.

a.	Show	that	if	the	family	 	of	hash	functions	is	2-universal,	then	it	is	universal.

The	number	of	hash	functions	for	which	 	is	 	,	therefore	the
family	is	universal.

b.	Suppose	that	the	universe	 	is	the	set	of	 	-tuples	of	values	drawn	from

	,	where	 	is	prime.	Consider	an	element

	.	For	any	 	-tuple	 	,

define	the	hash	function	 	by

	.

Let	 	.	Show	that	 	is	universal,	but	not	2-universal.

For	 	,	 	could	not	be	2-universal.
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c.	Suppose	that	we	modify	 	slightly	from	part	(b):	for	any	 	and	for	any	
,	define

and	 	.	Argue	that	 	is	2-universal.

d.	Suppose	that	Alice	and	Bob	secretly	agree	on	a	hash	function	 	form	2-universal

family	 	of	hash	functions.	Each	 	maps	from	a	universe	of	keys	 	to	 	,
where	 	is	aprime.	Later,	Alice	sends	a	message	 	to	Bob	over	the	Internet,	where

	.	She	authenticates	this	message	to	Bob	by	also	sending	an	authentication	tag

	,	and	Bob	checks	that	the	pair	 	he	receives	indeed	satisfies

	.	Suppose	that	an	adversary	intercepts	 	en	route	and	tries	to	fool

Bob	by	replacing	the	pair	 	with	a	different	pair	 	.	Argue	that	the

probability	that	the	adversary	succeeds	in	fooling	Bob	into	accepting	 	is	at

most	 	,	no	matter	how	much	computing	power	the	adversary	has,	and	even	if	the
adversary	knows	the	family	 	of	hash	functions	used.

Since	 	is	2-universal,	every	pair	of	 	is	equally	likely	to	appear,	thus	 	could	be	any

value	from	 	.	Even	the	adversary	knows	 	,	since	 	is	2-universal,	then	 	is	universal,

the	probability	of	choosing	a	hash	function	that	 	is	at	most	 	,	therefore	the

probability	is	at	most	 	.
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12	Binary	Search	Trees
12.1	What	is	a	binary	search	tree?
12.2	Querying	a	binary	search	tree
12.3	Insertion	and	deletion
12.4	Randomly	built	binary	search	trees
Problems
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12.1	What	is	a	binary	search	tree?

12.1-1

For	the	set	of	 	of	keys,	draw	binary	search	trees	of	heights	
,	 	,	 	,	 	,	and	 	.

12.1	What	is	a	binary	search	tree?
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12.1-2

What	is	the	difference	between	the	binary-search-tree	property	and	the	min-heap
property	(see	page	153)?	Can	the	min-heap	property	be	used	to	print	out	the	keys	of	an

	-node	tree	in	sorted	order	in	 	time?	Show	how,	or	explain	why	not.

No,	heap	needs	 	time.

12.1-3

Give	a	nonrecursive	algorithm	that	performs	an	inorder	tree	walk.

12.1	What	is	a	binary	search	tree?
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class	TreeNode:

				def	__init__(self,	val,	left=None,	right=None):

								self.val	=	val

								self.left	=	left

								self.right	=	right

def	inorder_tree_walk(root):

				stack	=	[]

				while	len(stack)	>	0	or	root	is	not	None:

								if	root	is	None:

												root	=	stack[-1]

												del	stack[-1]

												print(root.val)

												root	=	root.right

								else:

												stack.append(root)

												root	=	root.left

12.1-4

Give	recursive	algorithms	that	perform	preorder	and	postorder	tree	walks	in	 	time
on	a	tree	of	 	nodes.

class	TreeNode:

				def	__init__(self,	val,	left=None,	right=None):

								self.val	=	val

								self.left	=	left

								self.right	=	right

def	preorder_tree_walk(root):

				if	root	is	not	None:

								print(root.val)

								preorder_tree_walk(root.left)

								preorder_tree_walk(root.right)

def	postorder_tree_walk(root):

				if	root	is	not	None:

								postorder_tree_walk(root.left)

								postorder_tree_walk(root.right)

								print(root.val)

12.1-5
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Argue	that	since	sorting	 	elements	takes	 	time	in	the	worst	case	in	the
comparison	model,	any	comparison-based	algorithm	for	constructing	a	binary	search

tree	from	an	arbitrary	list	of	 	elements	takes	 	time	in	the	worst	case.

If	we	construct	the	binary	search	tree	by	comparison-based	algorithm	using	less	than

	time,	since	the	inorder	tree	walk	is	 	,	then	we	can	get	the	sorted	elements

in	less	than	 	time,	which	contradicts	the	fact	that	sorting	 	elements	takes

	time	in	the	worst	case.

12.1	What	is	a	binary	search	tree?
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12.2	Querying	a	binary	search	tree

12.2-1

Suppose	that	we	have	numbers	between	1	and	1000	in	a	binary	search	tree,	and	we
want	to	search	for	the	number	363.	Which	of	the	following	sequences	could	not	be	the
sequence	of	nodes	examined?

a.	2,	252,	401,	398,	330,	344,	397,	363.

b.	924,	220,	911,	244,	898,	258,	362,	363.

c.	925,	202,	911,	240,	912,	245,	363.

d.	2,	399,	387,	219,	266,	382,	381,	278,	363.

e.	935,	278,	347,	621,	299,	392,	358,	363.

c	is	impossible	since	911	<	912.
e	is	impossible	since	299	<	347.

12.2-2

Write	recursive	versions	of	TREE-MINIMUM	and	TREE-MAXIMUM.

class	TreeNode:

				def	__init__(self,	val,	left=None,	right=None):

								self.val	=	val

								self.left	=	left

								self.right	=	right

def	tree_minimum(root):

				if	root	is	None:

								return	None

				if	root.left	is	None:

								return	root.val

				return	tree_minimum(root.left)

def	tree_maximum(root):

				if	root	is	None:

								return	None

				if	root.right	is	None:

								return	root.val

				return	tree_maximum(root.right)
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12.2-3

Write	the	TREE-PREDECESSOR	procedure.

class	TreeNode:

				def	__init__(self,	val,	left=None,	right=None):

								self.val	=	val

								self.parent	=	None

								self.left	=	left

								self.right	=	right

								if	left	is	not	None:

												left.parent	=	self

								if	right	is	not	None:

												right.parent	=	self

def	tree_maximum(root):

				if	root	is	None:

								return	None

				if	root.right	is	None:

								return	root

				return	tree_maximum(root.right)

def	tree_predecessor(root):

				if	root	is	None:

								return	None

				if	root.left	is	not	None:

								return	tree_maximum(root.left)

				p	=	root.parent

				while	p	is	not	None	and	root	==	p.left:

								root	=	p

								p	=	p.parent

				return	p

12.2-4

Professor	Bunyan	thinks	he	has	discovered	a	remarkable	property	of	binary	search
trees.	Suppose	that	the	search	for	key	 	in	a	binary	search	tree	ends	up	in	a	leaf.
Consider	three	sets:	 	,	the	keys	to	the	left	of	the	search	path;	 	,	the	keys	on	the
search	path;	and	 	,	the	keys	to	the	right	of	the	search	path.	Professor	Bunyan	claims

that	any	three	keys	 	,	 	,	and	 	must	satisfy	 	.	Give	a
smallest	possible	counterexample	to	the	professor's	claim.
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3	<	4

12.2-5

Show	that	if	a	node	in	a	binary	search	tree	has	two	children,	then	its	successor	has	no
left	child	and	its	predecessor	has	no	right	child.

If	its	successor	has	left	child,	then	the	left	child	is	less	than	successor	and	it's	larger	than	the
node,	thus	the	successor	is	not	the	successor.

12.2-6

Consider	a	binary	search	tree	 	whose	keys	are	distinct.	Show	that	if	the	right	subtree
of	a	node	 	in	 	is	empty	and	 	has	a	successor	 	,	then	 	is	the	lowest	ancestor	of	
whose	left	child	is	also	an	ancestor	of	 	.	(Recall	that	every	node	is	its	own	ancestor.)

TREE-SUCCESSOR

12.2-7

An	alternative	method	of	performing	an	inorder	tree	walk	of	an	 	-node	binary	search
tree	finds	the	minimum	element	in	the	tree	by	calling	TREE-MINIMUM	and	then	making

	calls	to	TREE-SUCCESSOR.	Prove	that	this	algorithm	runs	in	 	time.

Based	on	12.2-8,	it	takes	 	time,	therefore	it's	 	.
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12.2-8

Prove	that	no	matter	what	node	we	start	at	in	a	height-	 	binary	search	tree,	

successive	calls	to	TREE-SUCCESSOR	take	 	time.

Suppose	 	is	the	starting	node	and	 	is	the	ending	node.	The	distance	between	 	and	 	is
at	most	 	,	and	all	the	edges	connecting	the	 	nodes	are	visited	twice,	therefore	it	takes

	time.

12.2-9

Let	 	be	a	binary	search	tree	whose	keys	are	distinct,	let	 	be	a	leaf	node,	and	let	 	be

its	parent.	Show	that	 	is	either	the	smallest	key	in	 	larger	than	 	or	the

largest	key	in	 	smaller	than	 	.

TREE-SUCCESSOR
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12.3	Insertion	and	deletion

12.3-1

Give	a	recursive	version	of	the	TREE-INSERT	procedure.

class	TreeNode:

				def	__init__(self,	val,	left=None,	right=None):

								self.val	=	val

								self.parent	=	None

								self.left	=	left

								self.right	=	right

								if	left	is	not	None:

												left.parent	=	self

								if	right	is	not	None:

												right.parent	=	self

def	insert(root,	x):

				if	root	is	None:

								return	TreeNode(x)

				if	root.val	>	x:

								root.left	=	insert(root.left,	x)

								root.left.parent	=	root

				elif	root.val	<	x:

								root.right	=	insert(root.right,	x)

								root.right.parent	=	root

				return	root

12.3-2

Suppose	that	we	construct	a	binary	search	tree	by	repeatedly	inserting	distinct	values
into	the	tree.	Argue	that	the	number	of	nodes	examined	in	searching	for	a	value	in	the
tree	is	one	plus	the	number	of	nodes	examined	when	the	value	was	first	inserted	into
the	tree.

Obviously

12.3-3

We	can	sort	a	given	set	of	 	numbers	by	first	building	a	binary	search	tree	containing
these	numbers	(using	TREE-INSERT	repeatedly	to	insert	the	numbers	one	by	one)	and
then	printing	the	numbers	by	an	inorder	tree	walk.	What	are	the	worstcase	and	best-
case	running	times	for	this	sorting	algorithm?
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Worst:	chain,	 	.

Best:	 	.

12.3-4

Is	the	operation	of	deletion	"commutative"	in	the	sense	that	deleting	 	and	then	 	from
a	binary	search	tree	leaves	the	same	tree	as	deleting	 	and	then	 	?	Argue	why	it	is	or
give	a	counterexample.

No.

Delete	0	then	delete	1:
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Delete	1	then	delete	0:

	

12.3-5

12.3	Insertion	and	deletion
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Suppose	that	instead	of	each	node	 	keeping	the	attribute	 	,	pointing	to	 	's
parent,	it	keeps	 	,	pointing	to	 	's	successor.	Give	pseudocode	for	SEARCH,
INSERT,	and	DELETE	on	a	binary	search	tree	 	using	this	representation.	These

procedures	should	operate	in	time	 	,	where	 	is	the	height	of	the	tree	 	.

In	SEARCH	and	INSERT,	we	do	not	need	to	know	the	parent	of	 	.

def	get_parent(root,	node):

				if	node	is	None:

								return	None

				a	=	tree_successor(tree_maximum(node))

				if	a	is	None:

								a	=	root

				else:

								if	a.left	==	node:

												return	a

								a	=	a.left

				while	a	is	not	None	and	a.right	!=	node:

								a	=	a.right

				return	a

Therefore	we	can	find	 	's	parent	in	 	,	DELETE	is	 	.

12.3-6

When	node	 	in	TREE-DELETE	has	two	children,	we	could	choose	node	 	as	its
predecessor	rather	than	its	successor.	What	other	changes	to	TREE-DELETE	would	be
necessary	if	we	did	so?	Some	have	argued	that	a	fair	strategy,	giving	equal	priority	to
predecessor	and	successor,	yields	better	empirical	performance.	How	might	TREE-
DELETE	be	changed	to	implement	such	a	fair	strategy?

Randomly	choose	predecessor	and	successor.
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12.4	Randomly	built	binary	search	trees

12.4-1

Prove	equation	(12.3).

	.

12.4-2

Describe	a	binary	search	tree	on	n	nodes	such	that	the	average	depth	of	a	node	in	the

tree	is	 	but	the	height	of	the	tree	is	 	.	Give	an	asymptotic	upper	bound
on	the	height	of	an	 	-node	binary	search	tree	in	which	the	average	depth	of	a	node	is

	.

12.4-3

Show	that	the	notion	of	a	randomly	chosen	binary	search	tree	on	 	keys,	where	each
binary	search	tree	of	 	keys	is	equally	likely	to	be	chosen,	is	different	from	the	notion	of
a	randomly	built	binary	search	tree	given	in	this	section.

For	 	,	there	are	5	binary	search	trees.	However,	if	we	build	the	trees	will	a	random
permutation,	the	first	tree	will	built	twice.
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12.4-4

Show	that	the	function	 	is	convex.

Therefore	 	is	convex.
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12.4-5	

Consider	RANDOMIZED-QUICKSORT	operating	on	a	sequence	of	 	distinct	input

numbers.	Prove	that	for	any	constant	 	,	all	but	 	of	the	 	input

permutations	yield	an	 	running	time.
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Problems

12-1	Binary	search	trees	with	equal	keys

Equal	keys	pose	a	problem	for	the	implementation	of	binary	search	trees.

a.	What	is	the	asymptotic	performance	of	TREE-INSERT	when	used	to	insert	 	items
with	identical	keys	into	an	initially	empty	binary	search	tree?

b.	Keep	a	boolean	flag	 	at	node	 	,	and	set	 	to	either	 	or	 	based
on	the	value	of	 	,	which	alternates	between	FALSE	and	TRUE	each	time	we	visit	
while	inserting	a	node	with	the	same	key	as	 	.

c.	Keep	a	list	of	nodes	with	equal	keys	at	 	,	and	insert	 	into	the	list.

If	linked	list	is	used,	it	could	be	 	.

d.	Randomly	set	 	to	either	 	or	 	.	(Give	the	worst-case	performance
and	informally	derive	the	expected	running	time.)

Worst:	 	.

Expected:	 	.

12-2	Radix	trees
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Given	two	strings	 	and	 	,	where	each	 	and	each

	is	in	some	ordered	set	of	characters,	we	say	that	string	 	is	lexicographically	less
than	string	 	if	either

1.	 there	exists	an	integer	 	,	where	 	,	such	that	 	for	all

	and	 	,	or

2.	 	and	 	for	all	 	.

The	radix	tree	data	structure	shown	in	Figure	12.5	stores	the	bit	strings	1011,	10,	011,

100,	and	0.	When	searching	for	a	key	 	,	we	go	left	at	a	node	of	depth

	if	 	and	right	if	 	.	Let	 	be	a	set	of	distinct	bit	strings	whose	lengths

sum	to	 	.	Show	how	to	use	a	radix	tree	to	sort	 	lexicographically	in	 	time.	For
the	example	in	Figure	12.5,	the	output	of	the	sort	should	be	the	sequence	0,	011,	10,
100,	1011.

Insert	all	the	bit	strings	into	radix	tree	costs	 	,	then	use	preorder	tree	walk	to	sort	the

strings	costs	 	,	the	total	cost	is	still	 	.
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class	TreeNode:

				def	__init__(self,	val,	left=None,	right=None):

								self.val	=	val

								self.left	=	left

								self.right	=	right

class	RadixTree:

				def	__init__(self):

								self.root	=	None

				def	insert(self,	a):

								self.root	=	self.insert_rec(self.root,	a,	0)

				def	insert_rec(self,	root,	a,	idx):

								if	idx	==	len(a):

												if	root	is	None:

																return	TreeNode(a)

												root.val	=	a

												return	root

								if	root	is	None:

												root	=	TreeNode(None)

								if	a[idx]	==	'0':

												root.left	=	self.insert_rec(root.left,	a,	idx+1)

								else:

												root.right	=	self.insert_rec(root.right,	a,	idx+1)

								return	root

				def	sorted(self):

								self.sorted_list	=	[]

								self.sorted_rec(self.root)

								return	self.sorted_list

				def	sorted_rec(self,	root):

								if	root	is	None:

												return

								if	root.val	is	not	None:

												self.sorted_list.append(root.val)

								self.sorted_rec(root.left)

								self.sorted_rec(root.right)

def	sort_strings(strs):

				radix_tree	=	RadixTree()

				for	s	in	strs:

								radix_tree.insert(s)

				return	radix_tree.sorted()

12-3	Average	node	depth	in	a	randomly	built	binary	search
tree
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In	this	problem,	we	prove	that	the	average	depth	of	a	node	in	a	randomly	built	binary

search	tree	with	n	nodes	is	 	.	Although	this	result	is	weaker	than	that	of
Theorem	12.4,	the	technique	we	shall	use	reveals	a	surprising	similarity	between	the
building	of	a	binary	search	tree	and	the	execution	of	RANDOMIZED-QUICKSORT	from
Section	7.3.

We	define	the	total	path	length	 	of	a	binary	tree	 	as	the	sum,	over	all	nodes	

in	 	,	of	the	depth	of	node	 	,	which	we	denote	by	 	.

a.	Argue	that	the	average	depth	of	a	node	in	 	is

	.

Obviously.

Thus,	we	wish	to	show	that	the	expected	value	of	 	is	 	.

b.	Let	 	and	 	denote	the	left	and	right	subtrees	of	tree	 	,	respectively.	Argue	that
if	 	has	 	nodes,	then

	.

There	are	 	nodes	in	 	and	 	,	each	increase	by	1.

c.	Let	 	denote	the	average	total	path	length	of	a	randomly	built	binary	search	tree
with	n	nodes.	Show	that

	.

The	root	is	equally	likely	to	be	the	rank	in	 	.

d.	Show	how	to	rewrite	 	as

	.

Each	item	 	appears	twice	in	the	summation,	and
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e.	Recalling	the	alternative	analysis	of	the	randomized	version	of	quicksort	given	in

Problem	7-3,	conclude	that	 	.

Based	on	Problem	7-3,	 	.

f.	Describe	an	implementation	of	quicksort	in	which	the	comparisons	to	sort	a	set	of
elements	are	exactly	the	same	as	the	comparisons	to	insert	the	elements	into	a	binary
search	tree.

Choose	the	pivot	that	it	has	the	lowest	index	in	the	original	list.

12-4	Number	of	different	binary	trees

Let	 	denote	the	number	of	different	binary	trees	with	 	nodes.	In	this	problem,	you

will	find	a	formula	for	 	,	as	well	as	an	asymptotic	estimate.

a.	Show	that	 	and	that,	for	 	,

	.

A	root	with	two	subtree.

b.	Referring	to	Problem	4-4	for	the	definition	of	a	generating	function,	let	 	be	the
generating	function

	.
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Show	that	 	,	and	hence	one	way	to	express	 	in	closed
form	is

	.

The	Taylor	expansion	of	 	around	the	point	 	is	given	by

	,

where	 	is	the	 	th	derivative	of	 	evaluated	at	 	.

c.	Show	that

(the	 	th	Catalan	number)	by	using	the	Taylor	expansion	of	 	around	 	.

Let	 	,

The	numerator	of	the	derivative	is
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The	coefficient	is	 	.

Therefore	 	.

d.	Show	that

	.

Based	on	Stirling's	approximation	 	,
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13.1	Properties	of	red-black	trees

13.1-1

In	the	style	of	Figure	13.1(a),	draw	the	complete	binary	search	tree	of	height	3	on	the

keys	 	.	Add	the	NIL	leaves	and	color	the	nodes	in	three	different	ways
such	that	the	black-heights	of	the	resulting	red-black	trees	are	2,	3,	and	4.

13.1	Properties	of	red-black	trees
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13.1-2

Draw	the	red-black	tree	that	results	after	TREE-INSERT	is	called	on	the	tree	in	Figure
13.1	with	key	36.	If	the	inserted	node	is	colored	red,	is	the	resulting	tree	a	red-black
tree?	What	if	it	is	colored	black?

13.1	Properties	of	red-black	trees
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If	it	is	colored	red,	the	tree	doesn't	satisfy	property	4.

If	it	is	colored	black,	the	tree	doesn't	satisfy	property	5.

13.1-3

Let	us	define	a	relaxed	red-black	tree	as	a	binary	search	tree	that	satisfies	red-black
properties	1,	3,	4,	and	5.	In	other	words,	the	root	may	be	either	red	or	black.	Consider	a
relaxed	red-black	tree	 	whose	root	is	red.	If	we	color	the	root	of	 	black	but	make	no
other	changes	to	 	,	is	the	resulting	tree	a	red-black	tree?

Obviously	properties	1,	2,	3,	4	are	satisfied.

Changing	the	root	from	red	to	black	increases	the	number	of	black	nodes	in	each	path	by	1,
therefore	they	still	have	the	same	number	of	black	nodes.

The	resulting	tree	is	a	red-black	tree.

13.1-4

Suppose	that	we	"absorb"	every	red	node	in	a	red-black	tree	into	its	black	parent,	so
that	the	children	of	the	red	node	become	children	of	the	black	parent.	(Ignore	what
happens	to	the	keys.)	What	are	the	possible	degrees	of	a	black	node	after	all	its	red
children	are	absorbed?	What	can	you	say	about	the	depths	of	the	leaves	of	the
resulting	tree?

The	degree	could	be	2,	3,	4.

All	the	leaves	have	the	same	depth.

13.1-5

13.1	Properties	of	red-black	trees
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Show	that	the	longest	simple	path	from	a	node	 	in	a	red-black	tree	to	a	descendant
leaf	has	length	at	most	twice	that	of	the	shortest	simple	path	from	node	 	to	a
descendant	leaf.

Since	the	paths	contain	the	same	number	of	black	nodes	 	,	we	can	insert	one	red
node	after	each	black	nodes	in	a	simple	path	and	property	4	is	satisfied,	the	resulting	length

is	 	.

13.1-6

What	is	the	largest	possible	number	of	internal	nodes	in	a	red-black	tree	with	black-
height	 	?	What	is	the	smallest	possible	number?

The	largest	is	the	complete	binary	tree	with	height	 	,	which	has	 	internal	nodes.

The	smallest	is	a	black	chain	with	length	 	,	which	has	 	internal	nodes.

13.1-7

Describe	a	red-black	tree	on	 	keys	that	realizes	the	largest	possible	ratio	of	red
internal	nodes	to	black	internal	nodes.	What	is	this	ratio?	What	tree	has	the	smallest
possible	ratio,	and	what	is	the	ratio?

The	largest	ratio	is	2,	each	black	node	has	two	red	children.

The	smallest	ratio	is	0.
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13.2	Rotations

13.2-1

Write	pseudocode	for	RIGHT-ROTATE.

RIGHT-ROTATE(T,	y)

	1		x	=	y.left

	2		y.left	=	x.right

	3		if	x.right	!=	T.nil

	4						x.right.p	=	y

	5		x.p	=	y.p

	6		if	y.p	==	T.nil

	7						T.root	=	x

	8		elseif	y	==	y.p.right

	9						y.p.right	=	x

10		else	y.p.left	=	x

11		x.right	=	y

12		y.p	=	x

13.2-2

Argue	that	in	every	 	-node	binary	search	tree,	there	are	exactly	 	possible
rotations.

Every	node	can	rotate	with	its	parent,	only	the	root	does	not	have	a	parent,	therefore	there

are	 	possible	rotations.

13.2-3

Let	 	,	 	,	and	 	be	arbitrary	nodes	in	subtrees	 	,	 	,	and	 	,	respectively,	in	the	left
tree	of	Figure	13.2.	How	do	the	depths	of	 	,	 	,	and	 	change	when	a	left	rotation	is
performed	on	node	 	in	the	figure?

	:	increase	by	1.

	:	unchanged.

	:	decrease	by	1.

13.2-4

13.2	Rotations
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Show	that	any	arbitrary	 	-node	binary	search	tree	can	be	transformed	into	any	other

arbitrary	 	-node	binary	search	tree	using	 	rotations.

For	each	left	leaf,	we	perform	right	rotation	until	there	is	no	left	leaf.	We	need	at	most	
right	rotations	to	transform	the	tree	into	a	right-going	chain.

Since	we	can	transform	every	tree	into	a	right-going	chain,	and	the	operation	is	invertible,
therefore	we	can	transform	one	tree	into	the	right-going	chain	and	use	the	inverse	operation
to	construct	the	other	tree.

13.2-5	

We	say	that	a	binary	search	tree	 	can	be	right-converted	to	binary	search	tree	 	if

it	is	possible	to	obtain	 	from	 	via	a	series	of	calls	to	RIGHT-ROTATE.	Give	an

example	of	two	trees	 	and	 	such	that	 	cannot	be	right-converted	to	 	.	Then,

show	that	if	a	tree	 	can	be	right-converted	to	 	,	it	can	be	right-converted	using

	calls	to	RIGHT-ROTATE.

	

We	can	use	 	calls	to	rotate	the	node	which	is	the	root	in	 	to	 	's	root,	then	use	the
same	operation	in	the	two	subtrees.	There	are	 	nodes,	therefore	the	upper	bound	is

	.
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13.3	Insertion

13.3-1

In	line	16	of	RB-INSERT,	we	set	the	color	of	the	newly	inserted	node	 	to	red.	Observe
that	if	we	had	chosen	to	set	 	's	color	to	black,	then	property	4	of	a	red-black	tree	would
not	be	violated.	Why	didn’t	we	choose	to	set	 	's	color	to	black?

Violate	property	5.

13.3-2

Show	the	red-black	trees	that	result	after	successively	inserting	the	keys

	into	an	initially	empty	red-black	tree.

Insert	41:

Insert	38:

Insert	31:
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Insert	12:
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Insert	19:
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Insert	8:
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13.3-3

Suppose	that	the	black-height	of	each	of	the	subtrees	 	in	Figures	13.5	and
13.6	is	 	.	Label	each	node	in	each	figure	with	its	black-height	to	verify	that	the
indicated	transformation	preserves	property	5.
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13.3-4

Professor	Teach	is	concerned	that	RB-INSERT-FIXUP	might	set	 	to
RED,	in	which	case	the	test	in	line	1	would	not	cause	the	loop	to	terminate	when	 	is
the	root.	Show	that	the	professor's	concern	is	unfounded	by	arguing	that	RBINSERT-
FIXUP	never	sets	 	to	RED.

In	order	to	set	 	to	RED,	 	must	be	the	root;	and	if	 	is	the	root,	then	
is	black,	the	loop	terminates.

13.3-5

Consider	a	red-black	tree	formed	by	inserting	 	nodes	with	RB-INSERT.	Argue	that	if
	,	the	tree	has	at	least	one	red	node.

In	case	1,	 	and	 	are	RED,	if	the	loop	terminates,	then	 	could	not	be	the	root,	thus	
is	RED	after	the	fix	up.

In	case	2,	 	and	 	are	RED,	and	after	the	rotation	 	could	not	be	the	root,	thus	 	is
RED	after	the	fix	up.
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In	case	3,	 	is	RED	and	 	could	not	be	the	root,	thus	 	is	RED	after	the	fix	up.

Therefore,	there	is	always	at	least	one	red	node.

13.3-6

Suggest	how	to	implement	RB-INSERT	efficiently	if	the	representation	for	red-black
trees	includes	no	storage	for	parent	pointers.

Use	stack	to	record	the	path	to	the	inserted	node,	then	parent	is	the	top	element	in	the
stack.

In	case	1,	we	pop	 	and	 	.

In	case	2,	we	pop	 	and	 	,	then	push	 	and	 	.

In	case	3,	we	pop	 	,	 	and	 	,	then	push	 	.

RED	=	0

BLACK	=	1

class	Stack:

				def	__init__(self):

								self.vals	=	[]

				def	push(self,	x):

								self.vals.append(x)

				def	pop(self):

								if	len(self.vals)	==	0:

												return	None

								x	=	self.vals[-1]

								del	self.vals[-1]

								return	x

class	RedBlackTreeNode:

				def	__init__(self,	key,	left=None,	right=None):

								self.color	=	BLACK

								self.key	=	key

								self.left	=	left

								self.right	=	right

class	RedBlackTree:

				def	__init__(self):

								self.nil	=	RedBlackTreeNode(None)

								self.nil.color	=	BLACK

								self.nil.left	=	self.nil

								self.nil.right	=	self.nil
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								self.root	=	self.nil

def	left_rotate(T,	x,	p):

				y	=	x.right

				x.right	=	y.left

				if	p	==	T.nil:

								T.root	=	y

				elif	x	==	p.left:

								p.left	=	y

				else:

								p.right	=	y

				y.left	=	x

def	right_rotate(T,	x,	p):

				y	=	x.left

				x.left	=	y.right

				if	p	==	T.nil:

								T.root	=	y

				elif	x	==	p.right:

								p.right	=	y

				else:

								p.left	=	y

				y.right	=	x

def	rb_insert_fixup(T,	z,	stack):

				while	True:

								p	=	stack.pop()

								if	p.color	==	BLACK:

												break

								pp	=	stack.pop()

								if	p	==	pp.left:

												y	=	pp.right

												if	y.color	==	RED:

																p.color	=	BLACK

																y.color	=	BLACK

																pp.color	=	RED

																z	=	pp

												elif	z	==	p.right:

																stack.push(pp)

																stack.push(z)

																z	=	p

																left_rotate(T,	z,	pp)

												else:

																ppp	=	stack.pop()

																stack.push(p)

																p.color	=	BLACK

																pp.color	=	RED

																right_rotate(T,	pp,	ppp)

								else:

												y	=	pp.left
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												if	y.color	==	RED:

																p.color	=	BLACK

																y.color	=	BLACK

																pp.color	=	RED

																z	=	pp

												elif	z	==	p.left:

																stack.push(pp)

																stack.push(z)

																z	=	p

																right_rotate(T,	z,	pp)

												else:

																ppp	=	stack.pop()

																stack.push(p)

																p.color	=	BLACK

																pp.color	=	RED

																left_rotate(T,	pp,	ppp)

				T.root.color	=	BLACK

def	rb_insert(T,	z):

				stack	=	Stack()

				stack.push(T.nil)

				y	=	T.nil

				x	=	T.root

				while	x	!=	T.nil:

								stack.push(x)

								y	=	x

								if	z.key	<	x.key:

												x	=	x.left

								else:

												x	=	x.right

				if	y	==	T.nil:

								T.root	=	z

				elif	z.key	<	y.key:

								y.left	=	z

				else:

								y.right	=	z

				z.left	=	T.nil

				z.right	=	T.nil

				z.color	=	RED

				rb_insert_fixup(T,	z,	stack)

13.3	Insertion

285



13.4	Deletion

13.4-1

Argue	that	after	executing	RB-DELETE-FIXUP,	the	root	of	the	tree	must	be	black.

Case	1,	transform	to	2,	3,	4.

Case	2,	if	terminates,	the	root	of	the	subtree	(the	new	 	)	is	set	to	black.

Case	3,	transform	to	4.

Case	4,	the	root	(the	new	 	)	is	set	to	black.

13.4-2

Argue	that	if	in	RB-DELETE	both	 	and	 	are	red,	then	property	4	is	restored	by	the

call	to	RB-DELETE-FIXUP	 	.

Will	not	enter	the	loop,	 	is	set	to	black.

13.4-3

In	Exercise	13.3-2,	you	found	the	red-black	tree	that	results	from	successively	inserting

the	keys	 	into	an	initially	empty	tree.	Now	show	the	red-black
trees	that	result	from	the	successive	deletion	of	the	keys	in	the	order

	.
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Delete	8:

Delete	12:
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Delete	19:
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Delete	31:

	

Delete	38:

	

Delete	41.

13.4-4

In	which	lines	of	the	code	for	RB-DELETE-FIXUP	might	we	examine	or	modify	the
sentinel	 	?

Line	1,	2.
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13.4-5

In	each	of	the	cases	of	Figure	13.7,	give	the	count	of	black	nodes	from	the	root	of	the

subtree	shown	to	each	of	the	subtrees	 	,	and	verify	that	each	count

remains	the	same	after	the	transformation.	When	a	node	has	a	color	attribute	 	or	 	,

use	the	notation	count	 	or	count	 	symbolically	in	your	count.

13.4-6

Professors	Skelton	and	Baron	are	concerned	that	at	the	start	of	case	1	of	RBDELETE-
FIXUP,	the	node	 	might	not	be	black.	If	the	professors	are	correct,	then	lines	5–6
are	wrong.	Show	that	 	must	be	black	at	the	start	of	case	1,	so	that	the	professors
have	nothing	to	worry	about.

Since	 	is	red,	based	on	property	4,	 	must	be	black.

13.4-7

Suppose	that	a	node	 	is	inserted	into	a	red-black	tree	with	RB-INSERT	and	then	is
immediately	deleted	with	RB-DELETE.	Is	the	resulting	red-black	tree	the	same	as	the
initial	red-black	tree?	Justify	your	answer.

No.

Insert	3:
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Delete	3:
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Problems

13-1	Persistent	dynamic	sets

During	the	course	of	an	algorithm,	we	sometimes	find	that	we	need	to	maintain	past
versions	of	a	dynamic	set	as	it	is	updated.	We	call	such	a	set	persistent.	One	way	to
implement	a	persistent	set	is	to	copy	the	entire	set	whenever	it	is	modified,	but	this
approach	can	slow	down	a	program	and	also	consume	much	space.	Sometimes,	we
can	do	much	better.

a.	For	a	general	persistent	binary	search	tree,	identify	the	nodes	that	we	need	to
change	to	insert	a	key	 	or	delete	a	node	 	.

Insert:	the	number	of	nodes	in	the	simple	path	plus	1.

Delete:	the	ancestors	of	 	.

b.	Write	a	procedure	PERSISTENT-TREE-INSERT	that,	given	a	persistent	tree	 	and

a	key	 	to	insert,	returns	a	new	persistent	tree	 	that	is	the	result	of	inserting	 	into	
.

class	TreeNode:

				def	__init__(self,	key,	left=None,	right=None):

								self.key	=	key

								self.left	=	left

								self.right	=	right

def	insert(root,	x):

				if	root	is	None:

								return	TreeNode(x)

				new_root	=	TreeNode(root.key)

				if	root.key	<=	x:

								new_root.left	=	root.left

								new_root.right	=	insert(root.right,	x)

				else:

								new_root.left	=	insert(root.left,	x)

								new_root.right	=	root.right

				return	new_root

c.	If	the	height	of	the	persistent	binary	search	tree	 	is	 	,	what	are	the	time	and	space
requirements	of	your	implementation	of	PERSISTENT-TREE-INSERT?

	and	 	.
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d.	Suppose	that	we	had	included	the	parent	attribute	in	each	node.	In	this	case,
PERSISTENT-TREE-INSERT	would	need	to	perform	additional	copying.	Prove	that

PERSISTENT-TREE-INSERT	would	then	require	 	time	and	space,	where	 	is	the
number	of	nodes	in	the	tree.

e.	Show	how	to	use	red-black	trees	to	guarantee	that	the	worst-case	running	time	and

space	are	 	per	insertion	or	deletion.

Based	on	Exercise	13.3-6.

13-2	Join	operation	on	red-black	trees

The	join	operation	takes	two	dynamic	sets	 	and	 	and	an	element	 	such	that	for

any	 	and	 	,	we	have	 	.	It	returns	a

set	 	.	In	this	problem,	we	investigate	how	to	implement	the	join
operation	on	red-black	trees.

a.	Given	a	red-black	tree	 	,	let	us	store	its	black-height	as	the	new	attribute	 	.
Argue	that	RB-INSERT	and	RB-DELETE	can	maintain	the	 	attribute	without	requiring
extra	storage	in	the	nodes	of	the	tree	and	without	increasing	the	asymptotic	running
times.	Show	that	while	descending	through	 	,	we	can	determine	the	black-height	of

each	node	we	visit	in	 	time	per	node	visited.

Initialize:	 	.

RB-INSERT:	if	in	the	last	step	the	root	is	red,	we	increase	 	by	1.

RB-DELETE:	if	 	is	root,	we	decrease	 	by	1.

Each	node:	in	the	simple	path,	decrease	 	by	1	each	time	we	find	a	black	node.

We	wish	to	implement	the	operation	RB-JOIN	 	,	which	destroys	 	and	

and	returns	a	red-black	tree	 	.	Let	 	be	the	total	number	of

nodes	in	 	and	 	.

b.	Assume	that	 	.	Describe	an	 	-time	algorithm	that	finds	a

black	node	 	in	 	with	the	largest	key	from	among	those	nodes	whose	black-height	is
	.

Problems

293



Move	to	the	right	child	if	the	node	has	a	right	child,	otherwise	move	to	the	left	child.	If	the
node	is	black,	we	decease	 	by	1.	Repeat	the	step	until	 	.

c.	Let	 	be	the	subtree	rooted	at	 	.	Describe	how	 	can	replace	

in	 	time	without	destroying	the	binary-search-tree	property.

	's	parent	is	 	's	parent,	 	's	left	child	is	 	and	its	right	child	is	 	.

d.	What	color	should	we	make	 	so	that	red-black	properties	1,	3,	and	5	are

maintained?	Describe	how	to	enforce	properties	2	and	4	in	 	time.

Red.	RB-INSERT-FIXUP(T,	x).

e.	Argue	that	no	generality	is	lost	by	making	the	assumption	in	part	(b).	Describe	the

symmetric	situation	that	arises	when	 	.

Symmetric.

f.	Argue	that	the	running	time	of	RB-JOIN	is	 	.

13-3	AVL	trees

An	AVL	tree	is	a	binary	search	tree	that	is	height	balanced:	for	each	node	 	,	the
heights	of	the	left	and	right	subtrees	of	 	differ	by	at	most	1.	To	implement	an	AVL	tree,
we	maintain	an	extra	attribute	in	each	node:	 	is	the	height	of	node	 	.	As	for	any
other	binary	search	tree	 	,	we	assume	that	 	points	to	the	root	node.

a.	Prove	that	an	AVL	tree	with	 	nodes	has	height	 	.

	.

b.	To	insert	into	an	AVL	tree,	we	first	place	a	node	into	the	appropriate	place	in	binary
search	tree	order.	Afterward,	the	tree	might	no	longer	be	height	balanced.	Specifically,
the	heights	of	the	left	and	right	children	of	some	node	might	differ	by	2.	Describe	a

procedure	BALANCE	 	,	which	takes	a	subtree	rooted	at	 	whose	left	and	right
children	are	height	balanced	and	have	heights	that	differ	by	at	most	2,	i.e.,

	,	and	alters	the	subtree	rooted	at	 	to	be	height
balanced.

See	c.
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c.	Using	part	(b),	describe	a	recursive	procedure	AVL-INSERT	 	that	takes	a	node
	within	an	AVL	tree	and	a	newly	created	node	 	(whose	key	has	already	been	filled

in),	and	adds	 	to	the	subtree	rooted	at	 	,	maintaining	the	property	that	 	is	the	root	of

an	AVL	tree.	As	in	TREE-INSERT	from	Section	12.3,	assume	that	 	has	already

been	filled	in	and	that	 	and	 	;	also	assume	that
	.	Thus,	to	insert	the	node	 	into	the	AVL	tree	 	,	we	call	AVL-INSERT

	.

class	AVLTreeNode:

				def	__init__(self,	key,	left=None,	right=None):

								self.key	=	key

								self.h	=	0

								self.p	=	None

								self.left	=	left

								self.right	=	right

								if	self.left	is	not	None:

												self.left.p	=	self

								if	self.right	is	not	None:

												self.right.p	=	self

class	AVL:

				def	__init__(self):

								self.root	=	None

				def	left_rotate(self,	x):

								y	=	x.right

								x.right	=	y.left

								if	y.left	is	not	None:

												y.left.p	=	x

								y.p	=	x.p

								if	x.p	is	None:

												self.root	=	y

								elif	x	==	x.p.left:

												x.p.left	=	y

								else:

												x.p.right	=	y

								y.left	=	x

								x.p	=	y

				def	right_rotate(self,	x):

								y	=	x.left

								x.left	=	y.right

								if	y.right	is	not	None:

												y.right.p	=	x

								y.p	=	x.p

								if	x.p	is	None:

												self.root	=	y

								elif	x	==	x.p.left:
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												x.p.left	=	y

								else:

												x.p.right	=	y

								y.right	=	x

								x.p	=	y

				def	get_height(self,	node):

								if	node	is	None:

												return	-1

								return	node.h

				def	update_height(self,	node):

								if	node	is	None:

												return

								node.h	=	max(self.get_height(node.left),	self.get_height(node.right))+1

				def	balance_factor(self,	node):

								return	self.get_height(node.left)	-	self.get_height(node.right)

				def	avl_insert(self,	x):

								self.root	=	self.avl_insert_rec(self.root,	x)

				def	avl_insert_rec(self,	root,	x):

								if	root	is	None:

												return	AVLTreeNode(x)

								if	root.key	>	x:

												root.left	=	self.avl_insert_rec(root.left,	x)

												root.left.p	=	root

								else:

												root.right	=	self.avl_insert_rec(root.right,	x)

												root.right.p	=	root

								if	self.balance_factor(root)	==	2:

												if	self.balance_factor(root.left)	==	-1:

																self.left_rotate(root.left)

												self.right_rotate(root)

												root	=	root.p

												self.update_height(root.left)

												self.update_height(root.right)

												self.update_height(root)

								elif	self.balance_factor(root)	==	-2:

												if	self.balance_factor(root.right)	==	1:

																self.right_rotate(root.right)

												self.left_rotate(root)

												root	=	root.p

												self.update_height(root.left)

												self.update_height(root.right)

												self.update_height(root)

								else:

												self.update_height(root)

								return	root
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d.	Show	that	AVL-INSERT,	run	on	an	n-node	AVL	tree,	takes	 	time	and

performs	 	rotations.

	:	the	length	of	path	from	root	to	the	inserted	node.

	:	the	height	will	decrease	by	1	after	the	rotation,	therefore	the	ancestors	will	not	be
affected.

13-4	Treaps

If	we	insert	a	set	of	 	items	into	a	binary	search	tree,	the	resulting	tree	may	be	horribly
unbalanced,	leading	to	long	search	times.	As	we	saw	in	Section	12.4,	however,
randomly	built	binary	search	trees	tend	to	be	balanced.	Therefore,	one	strategy	that,	on
average,	builds	a	balanced	tree	for	a	fixed	set	of	items	would	be	to	randomly	permute
the	items	and	then	insert	them	in	that	order	into	the	tree.

a.	Show	that	given	a	set	of	nodes	 	,	with	associated	keys	and
priorities,	all	distinct,	the	treap	associated	with	these	nodes	is	unique.

The	root	is	the	node	with	smallest	priority,	the	root	divides	the	sets	into	two	subsets	based
on	the	key.	In	each	subset,	the	node	with	smallest	priority	is	selected	as	the	root,	thus	we
can	uniquely	determine	a	treap	with	a	specific	input.

b.	Show	that	the	expected	height	of	a	treap	is	 	,	and	hence	the	expected	time

to	search	for	a	value	in	the	treap	is	 	.

Same	as	randomly	built	BST.

c.	Explain	how	TREAP-INSERT	works.	Explain	the	idea	in	English	and	give
pseudocode.

class	TreapNode:

				def	__init__(self,	key,	left=None,	right=None):

								self.key	=	key

								self.priority	=	random.random()

								self.p	=	None

								self.left	=	left

								self.right	=	right

								if	self.left	is	not	None:

												self.left.p	=	self

								if	self.right	is	not	None:

												self.right.p	=	self

class	Treap:
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				def	__init__(self):

								self.root	=	None

				def	left_rotate(self,	x):

								y	=	x.right

								x.right	=	y.left

								if	y.left	is	not	None:

												y.left.p	=	x

								y.p	=	x.p

								if	x.p	is	None:

												self.root	=	y

								elif	x	==	x.p.left:

												x.p.left	=	y

								else:

												x.p.right	=	y

								y.left	=	x

								x.p	=	y

				def	right_rotate(self,	x):

								y	=	x.left

								x.left	=	y.right

								if	y.right	is	not	None:

												y.right.p	=	x

								y.p	=	x.p

								if	x.p	is	None:

												self.root	=	y

								elif	x	==	x.p.left:

												x.p.left	=	y

								else:

												x.p.right	=	y

								y.right	=	x

								x.p	=	y

				def	insert(self,	x):

								self.root	=	self.insert_rec(self.root,	x)

				def	insert_rec(self,	root,	x):

								if	root	is	None:

												return	TreapNode(x)

								if	root.key	>	x:

												root.left	=	self.insert_rec(root.left,	x)

												root.left.p	=	root

												if	root.left.priority	<	root.priority:

																self.right_rotate(root)

																root	=	root.p

								else:

												root.right	=	self.insert_rec(root.right,	x)

												root.right.p	=	root

												if	root.right.priority	<	root.priority:

																self.left_rotate(root)

																root	=	root.p

								return	root
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d.	Show	that	the	expected	running	time	of	TREAP-INSERT	is	 	.

Rotation	is	 	,	at	most	 	rotations,	therefore	the	expected	running	time	is	 	.

e.	Consider	the	treap	 	immediately	after	TREAP-INSERT	has	inserted	node	 	.	Let	
be	the	length	of	the	right	spine	of	the	left	subtree	of	 	.	Let	 	be	the	length	of	the	left
spine	of	the	right	subtree	of	 	.	Prove	that	the	total	number	of	rotations	that	were

performed	during	the	insertion	of	 	is	equal	to	 	.

Left	rotation	increase	 	by	1,	right	rotation	increase	 	by	1.

f.	Show	that	 	if	and	only	if	 	,	

,	and,	for	every	 	such	that	 	,	we	have

	.

The	first	two	are	obvious.

The	min-heap	property	will	not	hold	if	 	.

g.	Show	that

Total	number	of	permutations:	

Permutations	satisfy	the	condition:	

h.	Show	that
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i.	Use	a	symmetry	argument	to	show	that

j.	Conclude	that	the	expected	number	of	rotations	performed	when	inserting	a	node	into
a	treap	is	less	than	2.
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14.1	Dynamic	order	statistics
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14.1	Dynamic	order	statistics

14.1-1

Show	how	OS-SELECT	 	operates	on	the	red-black	tree	 	of	Figure
14.1.

26:	r	=	13,	i	=	10,	go	left
17:	r	=	8,	i	=	10,	go	right
21:	r	=	3,	i	=	2,	go	left
19:	r	=	1,	i	=	2,	go	right
20:	r	=	1,	i	=	1,	choose	20

14.1-2

Show	how	OS-RANK	 	operates	on	the	red-black	tree	 	of	Figure	14.1	and	the

node	 	with	 	.

35:	r	=	1
38:	r	=	1
30:	r	=	r	+	2	=	3
41:	r	=	3
26:	r	=	r	+	13	=	16

14.1-3

Write	a	nonrecursive	version	of	OS-SELECT.

14.1	Dynamic	order	statistics
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class	TreeNode:

				def	__init__(self,	key,	left=None,	right=None):

								self.key	=	key

								self.size	=	1

								self.left	=	left

								self.right	=	right

								if	left	is	not	None:

												self.size	+=	left.size

								if	right	is	not	None:

												self.size	+=	right.size

def	os_select(x,	i):

				while	True:

								if	x.left	is	None:

												r	=	1

								else:

												r	=	x.left.size	+	1

								if	i	==	r:

												return	x

								elif	i	<	r:

												x	=	x.left

								else:

												x	=	x.right

												i	-=	r

14.1-4

Write	a	recursive	procedure	OS-KEY-RANK	 	that	takes	as	input	an	order-
statistic	tree	 	and	a	key	 	and	returns	the	rank	of	 	in	the	dynamic	set	represented	by
	.	Assume	that	the	keys	of	 	are	distinct.
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class	TreeNode:

				def	__init__(self,	key,	left=None,	right=None):

								self.key	=	key

								self.size	=	1

								self.left	=	left

								self.right	=	right

								if	left	is	not	None:

												self.size	+=	left.size

								if	right	is	not	None:

												self.size	+=	right.size

def	os_key_rank(x,	k,	i=0):

				r	=	1

				if	x.left	is	not	None:

								r	+=	x.left.size

				if	k	==	x.key:

								return	i	+	r

				if	k	<	x.key:

								return	os_key_rank(x.left,	k,	i)

				if	k	>	x.key:

								return	os_key_rank(x.right,	k,	i	+	r)

14.1-5

Given	an	element	 	in	an	 	-node	order-statistic	tree	and	a	natural	number	 	,	how	can

we	determine	the	 	th	successor	of	 	in	the	linear	order	of	the	tree	in	 	time?

OS-SELECT(T,	OS-RANK(T,	x)	+	i)

14.1-6

Observe	that	whenever	we	reference	the	size	attribute	of	a	node	in	either	OS-SELECT
or	OS-RANK,	we	use	it	only	to	compute	a	rank.	Accordingly,	suppose	we	store	in	each
node	its	rank	in	the	subtree	of	which	it	is	the	root.	Show	how	to	maintain	this
information	during	insertion	and	deletion.	(Remember	that	these	two	operations	can
cause	rotations.)

Tree	walk	and	change	the	rank	by	comparing	the	key	of	the	node	with	that	of	the	inserted

node.	

14.1-7

Show	how	to	use	an	order-statistic	tree	to	count	the	number	of	inversions	(see	Problem

2-4)	in	an	array	of	size	 	in	time	 	.
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After	the	insertion	of	a	node,	the	number	of	tree	nodes	subtract	the	rank	of	the	inserted	node
is	the	number	of	inversions	of	the	current	node.

14.1-8	

Consider	 	chords	on	a	circle,	each	defined	by	its	endpoints.	Describe	an	 	-
time	algorithm	to	determine	the	number	of	pairs	of	chords	that	intersect	inside	the
circle.	(For	example,	if	the	 	chords	are	all	diameters	that	meet	at	the	center,	then	the

correct	answer	is	 	.	Assume	that	no	two	chords	share	an	endpoint.

Sort	the	vertices	in	clock-wise	order,	and	assign	a	unique	value	to	each	vertex.	For	each
chord	its	two	vertices	are	 	,	 	and	 	.	Add	the	vertices	one	by	one	in	clock-wise
order,	if	we	meet	a	 	,	we	add	it	to	the	order-statistic	tree,	if	we	meet	a	 	,	we	calculate
how	many	nodes	are	larger	than	 	(which	is	the	number	of	intersects	with	chord	 	),	and
remove	 	.
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14.2	How	to	augment	a	data	structure

14.2-1

Show,	by	adding	pointers	to	the	nodes,	how	to	support	each	of	the	dynamic-set	queries

MINIMUM,	MAXIMUM,	SUCCESSOR,	and	PREDECESSOR	in	 	worstcase	time
on	an	augmented	order-statistic	tree.	The	asymptotic	performance	of	other	operations
on	order-statistic	trees	should	not	be	affected.

MINIMUM:	A	pointer	points	to	the	minimum	node,	if	the	node	is	being	deleted,	move	the
pointer	to	its	successor.

MAXIMUM:	Similar	to	MINIMUM.

SUCCESSOR:	Every	node	records	its	successor,	the	insertion	and	deletion	is	similar	to	that
in	linked	list.

PREDECESSOR:	Similar	to	MAXIMUM.

14.2-2

Can	we	maintain	the	black-heights	of	nodes	in	a	red-black	tree	as	attributes	in	the
nodes	of	the	tree	without	affecting	the	asymptotic	performance	of	any	of	the	redblack
tree	operations?	Show	how,	or	argue	why	not.	How	about	maintaining	the	depths	of
nodes?

14.2-3	

Let	 	be	an	associative	binary	operator,	and	let	 	be	an	attribute	maintained	in	each
node	of	a	red-black	tree.	Suppose	that	we	want	to	include	in	each	node	 	an	additional

attribute	 	such	that	 	,	where
	is	the	inorder	listing	of	nodes	in	the	subtree	rooted	at	 	.	Show	how

to	update	the	 	attributes	in	 	time	after	a	rotation.	Modify	your	argument	slightly	to
apply	it	to	the	size	attributes	in	order-statistic	trees.

14.2-4	
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We	wish	to	augment	red-black	trees	with	an	operation	RB-ENUMERATE	 	that

outputs	all	the	keys	 	such	that	 	in	a	red-black	tree	rooted	at	 	.	Describe

how	to	implement	RB-ENUMERATE	in	 	time,	where	 	is	the	number	of
keys	that	are	output	and	 	is	the	number	of	internal	nodes	in	the	tree.

	:	Find	the	smallest	key	that	larger	than	or	equal	to	 	.

	:	Based	on	Exercise	14.2-1,	find	the	 	successor.
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14.3	Interval	trees

14.3-1

Write	pseudocode	for	LEFT-ROTATE	that	operates	on	nodes	in	an	interval	tree	and

updates	the	 	attributes	in	 	time.

14.3-2

Rewrite	the	code	for	INTERVAL-SEARCH	so	that	it	works	properly	when	all	intervals
are	open.

INTERVAL-SEARCH(T,	i)

1	x	=	T.root

2	while	x	!=	T.nil	and	(i.high	<=	x.int.left	or	x.int.right	<=	i.low)

3					if	x.left	!=	T.nil	and	x.left.max	>	i.low

4									x	=	x.left

5					else	x	=	x.right

6	return	x

14.3-3

Describe	an	efficient	algorithm	that,	given	an	interval	 	,	returns	an	interval	overlapping
	that	has	the	minimum	low	endpoint,	or	 	if	no	such	interval	exists.

MIN-INTERVAL-SEARCH(T,	i)

	1	x	=	T.root

	2	ret	=	T.nil

	3	while	x	!=	T.nil:

	4					if	not	(i.high	<=	x.int.left	or	x.int.right	<=	i.low)

	5									if	ret	==	T.nil	or	ret.right	>	x.int.right

	6													ret	=	x

	7					if	x.left	!=	T.nil	and	x.left.max	>	i.low

	8									x	=	x.left

	9					else	x	=	x.right

10	return	ret

14.3-4
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Given	an	interval	tree	 	and	an	interval	 	,	describe	how	to	list	all	intervals	in	 	that

overlap	 	in	 	time,	where	 	is	the	number	of	intervals	in	the	output
list.

INTERVALS-SEARCH(T,	x,	i)

	1	lst	=	[]

	2	if	i	overlaps	x.int

	3					lst.append(x)

	4	if	x.left	!=	T.nil	and	x.left.max	>	i.low

	5					lst	+=	INTERVALS-SEARCH(T,	x.left,	i)

	6	if	x.right	!=	T.nil	and	x.int.low	<=	i.high	and	x.right.max	>=	i.low

	7					lst	+=	INTERVALS-SEARCH(T,	x.right,	i)

	8	return	lst

14.3-5

Suggest	modifications	to	the	interval-tree	procedures	to	support	the	new	operation

INTERVAL-SEARCH-EXACTLY	 	,	where	 	is	an	interval	tree	and	 	is	an
interval.	The	operation	should	return	a	pointer	to	a	node	 	in	 	such	that

	and	 	,	or	 	if	 	contains	no
such	node.	All	operations,	including	INTERVAL-SEARCH-EXACTLY,	should	run	in

	time	on	an	 	-node	interval	tree.

Search	for	nodes	which	has	exactly	the	same	low	value.

14.3-6

Show	how	to	maintain	a	dynamic	set	 	of	numbers	that	supports	the	operation	MIN-

GAP,	which	gives	the	magnitude	of	the	difference	of	the	two	closest	numbers	in	 	.	For

example,	if	 	,	then	MIN-GAP	 	returns	 	,

since	 	and	 	are	the	two	closest	numbers	in	 	.	Make	the	operations	INSERT,
DELETE,	SEARCH,	and	MIN-GAP	as	efficient	as	possible,	and	analyze	their	running
times.

Based	on	Exercise	14.2-1,	we	can	maintain	SUCCESSOR	in	 	time,	each	time	after

updating	the	SUCCESSOR,	we	can	update	 	to	 	.
And	based	on	Exercise	14.2-1	we	can	also	maintain	the	minimum	 	of	the	subtree	in

	time.

14.3-7	
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VLSI	databases	commonly	represent	an	integrated	circuit	as	a	list	of	rectangles.
Assume	that	each	rectangle	is	rectilinearly	oriented	(sides	parallel	to	the	 	-	and	 	-
axes),	so	that	we	represent	a	rectangle	by	its	minimum	and	maximum	 	and	 	-

coordinates.	Give	an	 	-time	algorithm	to	decide	whether	or	not	a	set	of	
rectangles	so	represented	contains	two	rectangles	that	overlap.	Your	algorithm	need
not	report	all	intersecting	pairs,	but	it	must	report	that	an	overlap	exists	if	one	rectangle
entirely	covers	another,	even	if	the	boundary	lines	do	not	intersect.

Suppose	we	represent	a	rectangle	by	 	.

Sort	the	 	s	and	 	s	in	ascending	order.	From	left	to	right,	if	we	meet	a	 	,

before	we	add	 	to	the	interval	tree,	if	the	interval	 	is
overlapped	with	some	node	in	the	interval	tree,	then	there	is	an	overlap	of	rectangles.	And

when	we	meet	a	 	,	we	remove	 	from	the	interval	tree.

14.3	Interval	trees
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Problems

14-1	Point	of	maximum	overlap

Suppose	that	we	wish	to	keep	track	of	a	point	of	maximum	overlap	in	a	set	of	intervals	-
a	point	with	the	largest	number	of	intervals	in	the	set	that	overlap	it.

a.	Show	that	there	will	always	be	a	point	of	maximum	overlap	that	is	an	endpoint	of	one
of	the	segments.

b.	Design	a	data	structure	that	efficiently	supports	the	operations	INTERVAL-INSERT,
INTERVAL-DELETE,	and	FIND-POM,	which	returns	a	point	of	maximum	overlap.

14-2	Josephus	permutation

We	define	the	Josephus	problem	as	follows.	Suppose	that	 	people	form	a	circle	and
that	we	are	given	a	positive	integer	 	.	Beginning	with	a	designated	first	person,
we	proceed	around	the	circle,	removing	every	 	th	person.	After	each	person	is
removed,	counting	continues	around	the	circle	that	remains.	This	process	continues
until	we	have	removed	all	 	people.	The	order	in	which	the	people	are	removed	from

the	circle	defines	the	 	-Josephus	permutation	of	the	integers	 	.

For	example,	the	 	-Josephus	permutation	is	 	.

a.	Suppose	that	 	is	a	constant.	Describe	an	 	-time	algorithm	that,	given	an

integer	 	,	outputs	the	 	-Josephus	permutation.

Use	doubly	linked	list,	the	time	is	 	,	since	 	is	a	constant,	 	=	 	.
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class	LinkedListNode:

				def	__init__(self,	key):

								self.key	=	key

								self.prev	=	None

								self.next	=	None

class	LinkedList:

				def	__init__(self):

								self.head	=	None

				def	insert(self,	key):

								x	=	LinkedListNode(key)

								if	self.head	is	None:

												self.head	=	x

												x.next	=	x

												x.prev	=	x

								else:

												x.prev	=	self.head.prev

												x.next	=	self.head

												x.prev.next	=	x

												x.next.prev	=	x

				def	remove(self):

								if	self.head.next	==	self.head:

												self.head	=	None

								else:

												self.head.next.prev	=	self.head.prev

												self.head.prev.next	=	self.head.next

												self.head	=	self.head.next

				def	forward(self,	step):

								while	step	>	0:

												step	-=	1

												self.head	=	self.head.next

def	josephus_permutation(n,	m):

				lst	=	LinkedList()

				for	i	in	xrange(1,	n	+	1):

								lst.insert(i)

				perm	=	[]

				while	lst.head	is	not	None:

								lst.forward(m	-	1)

								perm.append(lst.head.key)

								lst.remove()

				return	perm

b.	Suppose	that	 	is	not	a	constant.	Describe	an	 	-time	algorithm	that,

given	integers	 	and	 	,	outputs	the	 	-Josephus	permutation.
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Build	a	balanced	binary	search	tree	in	 	,	maintain	 	to	support	order-
statistics.	In	each	iteration,	we	select	and	delete	the

	th	element.

class	TreeNode:

				def	__init__(self,	key,	left=None,	right=None):

								self.key	=	key

								self.color	=	BLACK

								self.size	=	1

								self.p	=	None

								self.left	=	left

								self.right	=	right

								if	left	is	not	None:

												left.p	=	self

												self.size	+=	left.size

								if	right	is	not	None:

												right.p	=	self

												self.size	+=	right.size

class	BinarySearchTree:

				def	__init__(self,	a):

								self.root	=	self.build(a,	0,	len(a))

				def	build(self,	a,	l,	r):

								if	l	>=	r:

												return	None

								mid	=	(l	+	r)	//	2

								return	TreeNode(a[mid],	self.build(a,	l,	mid),	self.build(a,	mid+1,	r))

				def	get_size(self,	x):

								if	x	is	None:

												return	0

								return	x.size

				def	update_size(self,	x):

								if	x	is	not	None:

												x.size	=	1	+	self.get_size(x.left)	+	self.get_size(x.right)

				def	select(self,	x,	i):

								r	=	self.get_size(x.left)	+	1

								if	i	==	r:

												return	x

								elif	i	<	r:

												return	self.select(x.left,	i)

								else:

												return	self.select(x.right,	i	-	r)

				def	minimum(self,	x):

								while	x.left	is	not	None:

												x	=	x.left
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								return	x

				def	transplant(self,	u,	v):

								if	u.p	is	None:

												self.root	=	v

								elif	u	==	u.p.left:

												u.p.left	=	v

								else:

												u.p.right	=	v

								if	v	is	not	None:

												v.p	=	u.p

				def	delete(self,	z):

								if	z.left	is	None:

												self.transplant(z,	z.right)

								elif	z.right	is	None:

												self.transplant(z,	z.left)

								else:

												y	=	self.minimum(z.right)

												p	=	y.p

												if	y.p	!=	z:

																self.transplant(y,	y.right)

																y.right	=	z.right

																y.right.p	=	y

												self.transplant(z,	y)

												y.left	=	z.left

												y.left.p	=	y

												while	p	!=	z	and	p	!=	y:

																self.update_size(p)

																p	=	p.p

												self.update_size(y)

								while	z.p	is	not	None:

												z	=	z.p

												self.update_size(z)

def	josephus_permutation(n,	m):

				tree	=	BinarySearchTree(range(1,	n	+	1))

				perm	=	[]

				rank	=	0

				while	n	>	0:

								rank	=	(rank	+	m	-	1)	%	n

								x	=	tree.select(tree.root,	rank	+	1)

								perm.append(x.key)

								tree.delete(x)

								n	-=	1

				return	perm
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15	Dynamic	Programming
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15.4	Longest	common	subsequence
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15.1	Rod	cutting

15.1-1

Show	that	equation	(15.4)	follows	from	equation	(15.3)	and	the	initial	condition

	.

For	 	,	 	.

Suppose	 	for	 	in	 	,	then

15.1-2

Show,	by	means	of	a	counterexample,	that	the	following	"greedy"	strategy	does	not
always	determine	an	optimal	way	to	cut	rods.	Define	the	density	of	a	rod	of	length	 	to

be	 	,	that	is,	its	value	per	inch.	The	greedy	strategy	for	a	rod	of	length	 	cuts	off	a

first	piece	of	length	 	,	where	 	,	having	maximum	density.	It	then	continues

by	applying	the	greedy	strategy	to	the	remaining	piece	of	length	 	.

Suppose	 	,	the	densities

	,	for	 	,	the	greedy	result	is	 	and	 	,	the	total
value	if	 	,	and	the	dynamic	programming	solution	is	 	and	 	,	which	is	 	.

15.1-3

Consider	a	modification	of	the	rod-cutting	problem	in	which,	in	addition	to	a	price	 	for
each	rod,	each	cut	incurs	a	fixed	cost	of	 	.	The	revenue	associated	with	a	solution	is
now	the	sum	of	the	prices	of	the	pieces	minus	the	costs	of	making	the	cuts.	Give	a
dynamic-programming	algorithm	to	solve	this	modified	problem.
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def	cut_rod(p,	n,	c):

				r	=	[0	for	_	in	xrange(n	+	1)]

				for	j	in	range(1,	n	+	1):

								r[j]	=	p[j]

								for	i	in	range(1,	j):

												r[j]	=	max(r[j],	p[i]	+	r[j	-	i]	-	c)

				return	r[n]

15.1-4

Modify	MEMOIZED-CUT-ROD	to	return	not	only	the	value	but	the	actual	solution,	too.

def	cut_rod_sub(p,	n,	r,	s):

				if	r[n]	>=	0:

								return	r[n]

				r[n]	=	0

				for	i	in	range(1,	n	+	1):

								ret	=	p[i]	+	cut_rod_sub(p,	n	-	i,	r,	s)

								if	r[n]	<	ret:

												r[n]	=	ret

												s[n]	=	i

				return	r[n]

def	cut_rod(p,	n):

				r	=	[-1	for	_	in	xrange(n	+	1)]

				s	=	[i	for	i	in	xrange(n	+	1)]

				cut_rod_sub(p,	n,	r,	s)

				r	=	r[n]

				subs	=	[]

				while	n	>	0:

								subs.append(s[n])

								n	-=	s[n]

				return	r,	subs

15.1-5

The	Fibonacci	numbers	are	defined	by	recurrence	(3.22).	Give	an	 	-time
dynamic-programming	algorithm	to	compute	the	nth	Fibonacci	number.	Draw	the
subproblem	graph.	How	many	vertices	and	edges	are	in	the	graph?

15.1	Rod	cutting
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def	fib(n):

				if	n	==	0:

								return	0

				if	n	==	1:

								return	1

				a,	b	=	0,	1

				for	i	in	range(1,	n):

								c	=	a	+	b

								a,	b	=	b,	c

				return	c

15.1	Rod	cutting
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15.2	Matrix-chain	multiplication

15.2-1

Find	an	optimal	parenthesization	of	a	matrix-chain	product	whose	sequence	of

dimensions	is	 	.

Table	 	:

1 2 3 4 5 6

1 0 150 330 405 1655 2010

2 0 360 330 2430 1950

3 0 180 930 1770

4 0 3000 1860

5 0 1500

6 0

Table	 	:

1 2 3 4 5 6

1 1 2 2 4 2

2 2 2 2 2

3 3 4 4

4 4 4

5 5

6

Optimal	parenthesization:

15.2-2

15.2	Matrix-chain	multiplication
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Give	a	recursive	algorithm	MATRIX-CHAIN-MULTIPLY	 	that	actually
performs	the	optimal	matrix-chain	multiplication,	given	the	sequence	of	matrices

	,	the	 	table	computed	by	MATRIX-CHAIN-ORDER,	and	the

indices	 	and	 	.	(The	initial	call	would	be	MATRIX-CHAIN-MULTIPLY	 	.)

MATRIX-CHAIN-MULTIPLY(A,	s,	i,	j)

1	if	i	==	j

2					return	A[i]

3	if	i	+	1	==	j

4					return	A[i]	*	A[j]

5	b	=	MATRIX-CHAIN-MULTIPLY(A,	s,	i,	s[i,	j])

6	c	=	MATRIX-CHAIN-MULTIPLY(A,	s,	s[i,	j]	+	1,	j)

7	return	b	*	c

15.2-3

Use	the	substitution	method	to	show	that	the	solution	to	the	recurrence	(15.6)	is	
.

Suppose	 	,

15.2-4

Describe	the	subproblem	graph	for	matrix-chain	multiplication	with	an	input	chain	of
length	 	.	How	many	vertices	does	it	have?	How	many	edges	does	it	have,	and	which
edges	are	they?

Vertice:	 	,	edges:	 	.

15.2-5

15.2	Matrix-chain	multiplication
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Let	 	be	the	number	of	times	that	table	entry	 	is	referenced	while
computing	other	table	entries	in	a	call	of	MATRIX-CHAIN-ORDER.	Show	that	the	total
number	of	references	for	the	entire	table	is

	.

15.2-6

Show	that	a	full	parenthesization	of	an	 	-element	expression	has	exactly	 	pairs
of	parentheses.

	multiplications.

15.2	Matrix-chain	multiplication
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15.3	Elements	of	dynamic	programming

15.3-1

Which	is	a	more	efficient	way	to	determine	the	optimal	number	of	multiplications	in	a
matrix-chain	multiplication	problem:	enumerating	all	the	ways	of	parenthesizing	the
product	and	computing	the	number	of	multiplications	for	each,	or	running	RECURSIVE-
MATRIX-CHAIN?	Justify	your	answer.

RECURSIVE-MATRIX-CHAIN

15.3-2

Draw	the	recursion	tree	for	the	MERGE-SORT	procedure	from	Section	2.3.1	on	an
array	of	16	elements.	Explain	why	memoization	fails	to	speed	up	a	good	divide-and-
conquer	algorithm	such	as	MERGE-SORT.

It's	not	overlapping.

15.3-3

Consider	a	variant	of	the	matrix-chain	multiplication	problem	in	which	the	goal	is	to
parenthesize	the	sequence	of	matrices	so	as	to	maximize,	rather	than	minimize,	the
number	of	scalar	multiplications.	Does	this	problem	exhibit	optimal	substructure?

Yes.

15.3-4

As	stated,	in	dynamic	programming	we	first	solve	the	subproblems	and	then	choose
which	of	them	to	use	in	an	optimal	solution	to	the	problem.	Professor	Capulet	claims
that	we	do	not	always	need	to	solve	all	the	subproblems	in	order	to	find	an	optimal
solution.	She	suggests	that	we	can	find	an	optimal	solution	to	the	matrix-chain

multiplication	problem	by	always	choosing	the	matrix	 	at	which	to	split	the

subproduct	 	(by	selecting	 	to	minimize	the	quantity	 	)
before	solving	the	subproblems.	Find	an	instance	of	the	matrix-chain	multiplication
problem	for	which	this	greedy	approach	yields	a	suboptimal	solution.

15.3-5

15.3	Elements	of	dynamic	programming
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Suppose	that	in	the	rod-cutting	problem	of	Section	15.1,	we	also	had	limit	 	on	the

number	of	pieces	of	length	 	that	we	are	allowed	to	produce,	for	 	.
Show	that	the	optimal-substructure	property	described	in	Section	15.1	no	longer	holds.

Not	independent.

15.3-6

Imagine	that	you	wish	to	exchange	one	currency	for	another.	You	realize	that	instead	of
directly	exchanging	one	currency	for	another,	you	might	be	better	off	making	a	series	of
trades	through	other	currencies,	winding	up	with	the	currency	you	want.	Suppose	that

you	can	trade	 	different	currencies,	numbered	 	,	where	you	start	with
currency	 	and	wish	to	wind	up	with	currency	 	.	You	are	given,	for	each	pair	of

currencies	 	and	 	,	an	exchange	rate	 	,	meaning	that	if	you	start	with	 	units	of

currency	 	,	you	can	trade	for	 	units	of	currency	 	.	A	sequence	of	trades	may	entail
a	commission,	which	depends	on	the	number	of	trades	you	make.	Let	 	be	the

commission	that	you	are	charged	when	you	make	 	trades.	Show	that,	if	 	for	all

	,	then	the	problem	of	finding	the	best	sequence	of	exchanges	from
currency	 	to	currency	 	exhibits	optimal	substructure.	Then	show	that	if	commissions

	are	arbitrary	values,	then	the	problem	of	finding	the	best	sequence	of	exchanges
from	currency	 	to	currency	 	does	not	necessarily	exhibit	optimal	substructure.

	:	 	.

If	 	are	arbitrary	values,	then	it's	not	independent.

15.3	Elements	of	dynamic	programming
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15.4	Longest	common	subsequence

15.4-1

Determine	an	LCS	of	 	and	 	.

	.

15.4-2

Give	pseudocode	to	reconstruct	an	LCS	from	the	completed	 	table	and	the	original

sequences	 	and	 	in	
time,	without	using	the	 	table.

PRINT-LCS(c,	X,	Y,	i,	j)

	1	if	c[i][j]	==	0

	2					return

	3	if	X[i]	==	Y[j]

	4					PRINT-LCS(c,	X,	Y,	i	-	1,	j	-	1)

	5					print	X[i]

	6	elseif	c[i	-	1][j]	>	c[i][j	-	1]

	7					PRINT-LCS(c,	X,	Y,	i	-	1,	j)

	8	else

	9					PRINT-LCS(c,	X,	Y,	i,	j	-	1)

15.4-3

Give	a	memoized	version	of	LCS-LENGTH	that	runs	in	 	time.

LCS-LENGTH(X,	Y,	i,	j)

	1	if	c[i,	j]	>	-1

	2					return	c[i,	j]

	3	if	i	==	0	or	j	==	0

	4					return	c[i,	j]	=	0

	5	if	xi	=	yj

	6					return	c[i,	j]	=	LCS-LENGTH(X,	Y,	i	-	1,	j	-	1)	+	1

	7	return	c[i,	j]	=	max(LCS-LENGTH(X,	Y,	i	-	1,	j),	LCS-LENGTH(X,	Y,	i,	j	-	1))

15.4-4

15.4	Longest	common	subsequence

324



Show	how	to	compute	the	length	of	an	LCS	using	only	 	entries	in	the	

table	plus	 	additional	space.	Then	show	how	to	do	the	same	thing,	but	using

	entries	plus	 	additional	space.

	:	rolling.

	:	save	the	old	value	of	the	last	computed	position.

15.4-5

Give	an	 	-time	algorithm	to	find	the	longest	monotonically	increasing
subsequence	of	a	sequence	of	 	numbers.

Calculate	the	LCS	of	the	original	sequence	and	the	sorted	sequence,

	time.

15.4-6	

Give	an	 	-time	algorithm	to	find	the	longest	monotonically	increasing
subsequence	of	a	sequence	of	 	numbers.

Binary	search.

15.4	Longest	common	subsequence
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15.5	Optimal	binary	search	trees

15.5-1

Write	pseudocode	for	the	procedure	CONSTRUCT-OPTIMAL-BST	 	which,
given	the	table	root,	outputs	the	structure	of	an	optimal	binary	search	tree.	For	the
example	in	Figure	15.10,	your	procedure	should	print	out	the	structure	corresponding	to
the	optimal	binary	search	tree	shown	in	Figure	15.9(b).

CONSTRUCT-OPTIMAL-BST(root,	i,	j,	last=0)

	1	if	i	L	j

	2					return

	3	if	last	==	0

	4					print	root[i,	j]	+	"is	the	root"

	5	elseif	j	<	last:

	6					print	root[i,	j]	+	"is	the	left	child	of"	+	last

	7	else

	8					print	root[i,	j]	+	"is	the	right	child	of"	+	last

	9	CONSTRUCT-OPTIMAL-BST(root,	i,	root[i,	j]	-	1,	root[i,	j])

10	CONSTRUCT-OPTIMAL-BST(root,	root[i,	j]	+	1,	j,	root[i,	j])

15.5-2

Determine	the	cost	and	structure	of	an	optimal	binary	search	tree	for	a	set	of	
keys	with	the	following	probabilities

	is	the	root	 	is	the	left	child	of	 	 	is	the	left	child	of	 	 	is	the	right	child	of	 	

is	the	right	child	of	 	 	is	the	right	child	of	 	 	is	the	left	child	of	 	 	is	the	right	child

of	 	 	is	the	right	child	of	 	 	is	the	left	child	of	 	 	is	the	right	child	of	

15.5-3

Suppose	that	instead	of	maintaining	the	table	 	,	we	computed	the	value	of

	directly	from	equation	(15.12)	in	line	9	of	OPTIMAL-BST	and	used	this
computed	value	in	line	11.	How	would	this	change	affect	the	asymptotic	running	time	of
OPTIMAL-BST?

15.5-4	

15.5	Optimal	binary	search	trees
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Knuth	[212]	has	shown	that	there	are	always	roots	of	optimal	subtrees	such	that

	for	all	 	.	Use	this

fact	to	modify	the	OPTIMAL-BST	procedure	to	run	in	 	time.

	10	for	r	=	root[i,	j-1]	to	root[i	+	1,	j]

15.5	Optimal	binary	search	trees

327



Problems

15-1	Longest	simple	path	in	a	directed	acyclic	graph

Suppose	that	we	are	given	a	directed	acyclic	graph	 	with	real-valued
edge	weights	and	two	distinguished	vertices	 	and	 	.	Describe	a	dynamic-
programming	approach	for	finding	a	longest	weighted	simple	path	from	 	to	 	.	What
does	the	subproblem	graph	look	like?	What	is	the	efficiency	of	your	algorithm?

Topological	sort.

15-2	Longest	palindrome	subsequence

A	palindrome	is	a	nonempty	string	over	some	alphabet	that	reads	the	same	forward
and	backward.	Examples	of	palindromes	are	all	strings	of	length	1,	civic,	racecar,	and
aibohphobia	(fear	of	palindromes).	Give	an	efficient	algorithm	to	find	the	longest
palindrome	that	is	a	subsequence	of	a	given	input	string.	For	example,	given	the	input
character,	your	algorithm	should	return	carac.	What	is	the	running	time	of	your
algorithm?

LCS	of	the	original	string	and	the	reversed	string.

15-3	Bitonic	euclidean	traveling-salesman	problem

In	the	euclidean	traveling-salesman	problem,	we	are	given	a	set	of	n	points	in	the
plane,	and	we	wish	to	find	the	shortest	closed	tour	that	connects	all	n	points.	Figure
15.11(a)	shows	the	solution	to	a	7-point	problem.	The	general	problem	is	NP-hard,	and
its	solution	is	therefore	believed	to	require	more	than	polynomial	time	(see	Chapter	34).
J.	L.	Bentley	has	suggested	that	we	simplify	the	problem	by	restricting	our	attention	to
bitonic	tours,	that	is,	tours	that	start	at	the	leftmost	point,	go	strictly	rightward	to	the
rightmost	point,	and	then	go	strictly	leftward	back	to	the	starting	point.	Figure	15.11(b)
shows	the	shortest	bitonic	tour	of	the	same	7	points.	In	this	case,	a	polynomial-time

algorithm	is	possible.	Describe	an	 	-time	algorithm	for	determining	an	optimal
bitonic	tour.	You	may	assume	that	no	two	points	have	the	same	 	-coordinate	and	that
all	operations	on	real	numbers	take	unit	time.
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Sort	the	points	by	their	 	-coordinates,	and	suppose	there	are	 	points.	Let	 	be	the

minimal	distance	from	 	to	the	first	point	and	from	the	first	point	to	 	.	Since	 	is

symmetric,	suppose	that	 	,	then	 	is	the	shortest	bitnoic	tour.	If

	,	 	;	if	 	,

	.

15-4	Printing	neatly

Consider	the	problem	of	neatly	printing	a	paragraph	with	a	monospaced	font	(all
characters	having	the	same	width)	on	a	printer.	The	input	text	is	a	sequence	of	 	words

of	lengths	 	,	measured	in	characters.	We	want	to	print	this	paragraph
neatly	on	a	number	of	lines	that	hold	a	maximum	of	 	characters	each.	Our	criterion

of	"neatness"	is	as	follows.	If	a	given	line	contains	words	 	through	 	,	where	 	,
and	we	leave	exactly	one	space	between	words,	the	number	of	extra	space	characters

at	the	end	of	the	line	is	 	,	which	must	be	nonnegative	so	that
the	words	fit	on	the	line.	We	wish	to	minimize	the	sum,	over	all	lines	except	the	last,	of
the	cubes	of	the	numbers	of	extra	space	characters	at	the	ends	of	lines.	Give	a
dynamic-programming	algorithm	to	print	a	paragraph	of	 	words	neatly	on	a	printer.
Analyze	the	running	time	and	space	requirements	of	your	algorithm.

Let	 	be	the	minimal	sum	when	we	finshed	printing	 	words.

15-5	Edit	distance

Problems
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In	order	to	transform	one	source	string	of	text	 	to	a	target	string	 	,
we	can	perform	various	transformation	operations.	Our	goal	is,	given	 	and	 	,	to
produce	a	series	of	transformations	that	change	 	to	 	.	We	use	an	array	 	—assumed
to	be	large	enough	to	hold	all	the	characters	it	will	need—to	hold	the	intermediate

results.	Initially,	 	is	empty,	and	at	termination,	we	should	have	 	for

	.	We	maintain	current	indices	 	into	 	and	 	into	 	,	and	the

operations	are	allowed	to	alter	 	and	these	indices.	Initially,	 	.	We	are
required	to	examine	every	character	in	 	during	the	transformation,	which	means	that

at	the	end	of	the	sequence	of	transformation	operations,	we	must	have	 	.

We	may	choose	from	among	six	transformation	operations:

Copy	a	character	from	 	to	 	by	setting	 	and	then	incrementing	both	 	and

	.	This	operation	examines	 	.

Replace	a	character	from	 	by	another	character	 	,	by	setting	 	,	and	then

incrementing	both	 	and	 	.	This	operation	examines	 	.

Delete	a	character	from	 	by	incrementing	 	but	leaving	 	alone.	This	operation

examines	 	.

Insert	the	character	 	into	 	by	setting	 	and	then	incrementing	 	,	but	leaving
	alone.	This	operation	examines	no	characters	of	 	.

Twiddle	(i.e.,	exchange)	the	next	two	characters	by	copying	them	from	 	to	 	but	in	the

opposite	order;	we	do	so	by	setting	 	and	 	and	then

setting	 	and	 	.	This	operation	examines	 	and	 	.

Kill	the	remainder	of	 	by	setting	 	.	This	operation	examines	all	characters
in	 	that	have	not	yet	been	examined.	This	operation,	if	performed,	must	be	the	final
operation.

a.	Given	two	sequences	 	and	 	and	set	of	transformation-
operation	costs,	the	edit	distance	from	 	to	 	is	the	cost	of	the	least	expensive
operatoin	sequence	that	transforms	 	to	 	.	Describe	a	dynamic-programming

algorithm	that	finds	the	edit	distance	from	 	to	 	and	prints	an
optimal	opeartion	sequence.	Analyze	the	running	time	and	space	requirements	of	your
algorithm.
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Copy:	 	if	 	.

Replace:	 	if	 	.

Delete:	 	.

Insert:	 	.

Twiddle:	 	if	 	and

	.

Kill:	 	if	 	.

The	edit-distance	problem	generalizes	the	problem	of	aligning	two	DNA	sequences
(see,	for	example,	Setubal	and	Meidanis	[310,	Section	3.2]).	There	are	several	methods
for	measuring	the	similarity	of	two	DNA	sequences	by	aligning	them.	One	such	method
to	align	two	sequences	 	and	 	consists	of	inserting	spaces	at	arbitrary	locations	in	the

two	sequences	(including	at	either	end)	so	that	the	resulting	sequences	 	and	 	have

the	same	length	but	do	not	have	a	space	in	the	same	position	(i.e.,	for	no	position	 	are

both	 	and	 	a	space).	Then	we	assign	a	"score"	to	each	position.	Position	
receives	a	score	as	follows:

+1	if	 	and	neither	is	a	space,

-1	if	 	and	neither	is	a	space,

-2	if	eigher	 	or	 	is	a	space.

b.	Explain	how	to	cast	the	problem	of	finding	an	optimal	alignment	as	an	edit	distance
problem	using	a	subset	of	the	transformation	operations	copy,	replace,	delete,	insert,
twiddle,	and	kill.

	,	 	,	 	.

15-6	Planning	a	company	party

Problems
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Professor	Stewart	is	consulting	for	the	president	of	a	corporation	that	is	planning	a
company	party.	The	company	has	a	hierarchical	structure;	that	is,	the	supervisor
relation	forms	a	tree	rooted	at	the	president.	The	personnel	office	has	ranked	each
employee	with	a	conviviality	rating,	which	is	a	real	number.	In	order	to	make	the	party
fun	for	all	attendees,	the	president	does	not	want	both	an	employee	and	his	or	her
immediate	supervisor	to	attend.

Professor	Stewart	is	given	the	tree	that	describes	the	structure	of	the	corporation,	using
the	left-child,	right-sibling	representation	described	in	Section	10.4.	Each	node	of	the
tree	holds,	in	addition	to	the	pointers,	the	name	of	an	employee	and	that	employee’s
conviviality	ranking.	Describe	an	algorithm	to	make	up	a	guest	list	that	maximizes	the
sum	of	the	conviviality	ratings	of	the	guests.	Analyze	the	running	time	of	your	algorithm.

Let	 	be	the	maximal	sum	rooted	at	 	,	 	means	 	will	not	attend,	 	means

	will	attend.	 	,	 	.

15-7	Viterbi	algorithm

We	can	use	dynamic	programming	on	a	directed	graph	 	for	speech

recognition.	Each	edge	 	is	labeled	with	a	sound	 	from	a	finite	set	
of	sounds.	The	labeled	graph	is	a	formal	model	of	a	person	speaking	a	restricted

language.	Each	path	in	the	graph	starting	from	a	distinguished	vertex	
corresponds	to	a	possible	sequence	of	sounds	producted	by	the	model.	We	define	the
label	of	a	directed	path	to	be	the	concatenation	of	the	labels	of	the	edges	on	that	path.

a.	Describe	an	efficient	algorithm	that,	given	an	edge-labeled	graph	 	with

distinguished	vertex	 	and	a	sequence	 	of	sounds	from	 	,
returns	a	path	in	 	that	begins	at	 	and	has	 	as	its	label,	if	any	such	path	exists.
Otherwise,	the	algorithm	should	return	NO-SUCH-PATH.	Analyze	the	running	time	of
your	algorithm.

Let	 	be	the	state	of	vertex	 	in	iteration	 	,	 	.
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Now,	suppose	that	every	edge	 	has	an	associated	nonnegatve	probability

	of	traversing	the	edge	 	from	vertex	 	and	thus	producing	the
corresponding	sound.	The	sum	of	the	probabilities	of	the	edges	leaving	any	vertex
equals	 	.	The	probability	of	a	path	is	defined	to	the	product	of	the	probabilities	of	its
edges.	We	can	view	the	probability	of	a	path	beginning	at	 	as	the	probability	that	a
"random	walk"	beginning	at	 	will	follow	the	specified	path,	where	we	randomly
choose	which	edge	to	take	leaving	a	vertex	 	according	to	the	probabilities	of	the
available	edges	leaving	 	.

b.	Extend	your	answer	to	part	(a)	so	that	if	a	path	is	returned,	it	is	a	most	probable	path
starting	at	 	and	having	label	 	.	Analyze	the	running	time	of	your	algorithm.

	.

15-8	Image	compression	by	seam	carving

We	are	given	a	color	picture	consisting	of	an	 	array	 	of
pixels,	where	each	pixel	specifies	a	triple	of	red,	green,	and	blue	(RGB)	intensities.
Suppose	that	we	wish	to	compress	this	picture	slightly.	Specifically,	we	wish	to	remove
one	pixel	from	each	of	the	 	rows,	so	that	the	whole	picture	becomes	one	pixel
narrower.	To	avoid	disturbing	visual	effects,	however,	we	require	that	the	pixels
removed	in	two	adjacent	rows	be	in	the	same	or	adjacent	columns;	the	pixels	removed
form	a	"seam"	from	the	top	row	to	the	bottom	row	where	successive	pixels	in	the	seam
are	adjacent	vertically	or	diagonally.

a.	Show	that	the	number	of	such	possible	seams	grows	at	least	exponentially	in	 	,
assuming	that	 	.

num	 	.

b.	Suppose	now	that	along	with	each	pixel	 	,	we	have	calculated	a	real-valued

disruption	measure	 	,	indicating	how	disruptive	it	would	be	to	remove	pixel

	.	Intuitively,	the	lower	a	pixel's	disruption	measure,	the	more	similar	the	pixel	is
to	its	neighbors.	Suppose	further	that	we	define	the	disruption	measure	of	a	seam	to	be
the	sum	of	the	disruption	measures	of	its	pixels.

Give	an	algorithm	to	find	a	seam	with	the	lowest	disruption	measure.	How	efficient	is
your	algorithm?
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15-9	Breaking	a	string

A	certain	string-processing	language	allows	a	programmer	to	break	a	string	into	two
pieces.	Because	this	operation	copies	the	string,	it	costs	 	time	units	to	break	a	string
of	 	characters	into	two	pieces.	Suppose	a	programmer	wants	to	break	a	string	into
many	pieces.	The	order	in	which	the	breaks	occur	can	affect	the	total	amount	of	time
used.	For	example,	suppose	that	the	programmer	wants	to	break	a	20-character	string
after	characters	2,	8,	and	10	(numbering	the	characters	in	ascending	order	from	the
left-hand	end,	starting	from	1).	If	she	programs	the	breaks	to	occur	in	left-to-right	order,
then	the	first	break	costs	20	time	units,	the	second	break	costs	18	time	units	(breaking
the	string	from	characters	3	to	20	at	character	8),	and	the	third	break	costs	12	time
units,	totaling	50	time	units.	If	she	programs	the	breaks	to	occur	in	right-to-left	order,
however,	then	the	first	break	costs	20	time	units,	the	second	break	costs	10	time	units,
and	the	third	break	costs	8	time	units,	totaling	38	time	units.	In	yet	another	order,	she
could	break	first	at	8	(costing	20),	then	break	the	left	piece	at	2	(costing	8),	and	finally
the	right	piece	at	10	(costing	12),	for	a	total	cost	of	40.

Design	an	algorithm	that,	given	the	numbers	of	characters	after	which	to	break,	determines
a	least-cost	way	to	sequence	those	breaks.	More	formally,	given	a	string	 	with	

characters	and	an	array	 	containing	the	break	points,	compute	the	lowest	cost
for	a	sequence	of	breaks,	along	with	a	sequence	of	breaks	that	achieves	this	cost.

15-10	Planning	an	investment	strategy

Problems
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Your	knowledge	of	algorithms	helps	you	obtain	an	exciting	job	with	the	Acme	Computer
Company,	along	with	a	$10,000	signing	bonus.	You	decide	to	invest	this	money	with	the
goal	of	maximizing	your	return	at	the	end	of	10	years.	You	decide	to	use	the
Amalgamated	Investment	Company	to	manage	your	investments.	Amalgamated
Investments	requires	you	to	observe	the	following	rules.	It	offers	 	different

investments,	numbered	 	through	 	.	In	each	year	 	,	investment	 	provides	a	return

rate	of	 	.	In	other	words,	if	you	invest	 	dollars	in	investment	 	in	year	 	,	then	at	the

end	of	year	 	,	you	have	 	dollars.	The	return	rates	are	guaranteed,	that	is,	you	are
given	all	the	return	rates	for	the	next	10	years	for	each	investment.	You	make
investment	decisions	only	once	per	year.	At	the	end	of	each	year,	you	can	leave	the
money	made	in	the	previous	year	in	the	same	investments,	or	you	can	shift	money	to
other	investments,	by	either	shifting	money	between	existing	investments	or	moving
money	to	a	new	investement.	If	you	do	not	move	your	money	between	two	consecutive

years,	you	pay	a	fee	of	 	dollars,	whereas	if	you	switch	your	money,	you	pay	a	fee	of

	dollars,	where	 	.

a.	The	problem,	as	stated,	allows	you	to	invest	your	money	inmultiple	investments	in
each	year.	Prove	that	there	exists	an	optimal	investment	strategy	that,	in	each	year,
puts	all	the	money	into	a	single	investment.	(Recall	that	an	optimal	investment	strategy
maximizes	the	amount	of	money	after	10	years	and	is	not	concerned	with	any	other
objectives,	such	as	minimizing	risk.)

b.	Prove	that	the	problem	of	planning	your	optimal	investment	strategy	exhibits	optimal
substructure.

c.	Design	an	algorithm	that	plans	your	optimal	investment	strategy.	What	is	the	running

time	of	your	algorithm?	Let	 	be	the	maximal	profit	in	year	 	with	the	last
investment	 	.

d.	Suppose	that	Amalgamated	Investments	imposed	the	additional	restriction	that,	at
any	point,	you	can	have	no	more	than	$15,000	in	any	one	investment.	Show	that	the
problem	of	maximizing	your	income	at	the	end	of	10	years	no	longer	exhibits	optimal
substructure.

15-11	Inventory	planning
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The	Rinky	Dink	Company	makes	machines	that	resurface	ice	rinks.	The	demand	for
such	products	varies	from	month	to	month,	and	so	the	company	needs	to	develop	a
strategy	to	plan	its	manufacturing	given	the	fluctuating,	but	predictable,	demand.	The
company	wishes	to	design	a	plan	for	the	next	 	months.	For	each	month	 	,	the

company	knows	the	demand	 	,	that	is,	the	number	of	machines	that	it	will	sell.	Let

	be	the	total	demand	over	the	next	 	months.	The	company	keeps	a
full-time	staff	who	provide	labor	to	manufacture	up	to	 	machines	per	month.	If	the
company	needs	to	make	more	than	 	machines	in	a	given	month,	it	can	hire
additional,	part-time	labor,	at	a	cost	that	works	out	to	 	dollars	per	machine.
Furthermore,	if,	at	the	end	of	a	month,	the	company	is	holding	any	unsold	machines,	it

must	pay	inventory	costs.	The	cost	for	holding	 	machines	is	given	as	a	function	

for	 	,	where	 	for	 	and	 	for

	.

Give	an	algorithm	that	calculates	a	plan	for	the	company	that	minimizes	its	costs	while
fulfilling	all	the	demand.	The	running	time	should	be	polyomial	in	 	and	 	.

Let	 	be	the	minimal	cost	after	month	 	with	 	machines	remained.

15-12	Signing	free-agent	baseball	players
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Suppose	that	you	are	the	general	manager	for	a	major-league	baseball	team.	During
the	off-season,	you	need	to	sign	some	free-agent	players	for	your	team.	The	team
owner	has	given	you	a	budget	of	$X	to	spend	on	free	agents.	You	are	allowed	to	spend
less	than	$X	altogether,	but	the	owner	will	fire	you	if	you	spend	any	more	than	$X.

You	are	considering	 	different	positions,	and	for	each	position,	 	free-agent	players
who	play	that	position	are	available.	Because	you	do	not	want	to	overload	your	roster
with	too	many	players	at	any	position,	for	each	position	you	may	sign	at	most	one	free
agent	who	plays	that	position.	(If	you	do	not	sign	any	players	at	a	particular	position,
then	you	plan	to	stick	with	the	players	you	already	have	at	that	position.)

To	determine	how	valuable	a	player	is	going	to	be,	you	decide	to	use	a	sabermetric
statistic9	known	as	"VORP",	or	"value	over	replacement	player".	A	player	with	a	higher
VORP	is	more	valuable	than	a	player	with	a	lower	VORP.	A	player	with	a	higher	VORP
is	not	necessarily	more	expensive	to	sign	than	a	player	with	a	lower	VORP,	because
factors	other	than	a	player’s	value	determine	how	much	it	costs	to	sign	him.

For	each	available	free-agent	player,	you	have	three	pieces	of	information:

the	player’s	position,
the	amount	of	money	it	will	cost	to	sign	the	player,	and
the	player’s	VORP.

Devise	an	algorithm	that	maximizes	the	total	VORP	of	the	players	you	sign	while
spending	no	more	than	$X	altogether.	You	may	assume	that	each	player	signs	for	a
multiple	of	$100,000.	Your	algorithm	should	output	the	total	VORP	of	the	players	you
sign,	the	total	amount	of	money	you	spend,	and	a	list	of	which	players	you	sign.
Analyze	the	running	time	and	space	requirement	of	your	algorithm.
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16.1	An	activity-selection	problem

16.1-1

Give	a	dynamic-programming	algorithm	for	the	activity-selection	problem,	based	on

recurrence	(16.2).	Have	your	algorithm	compute	the	sizes	 	as	defined	above	and
also	produce	the	maximum-size	subset	of	mutually	compatible	activities.

Assume	that	the	inputs	have	been	sorted	as	in	equation	(16.1).	Compare	the	running
time	of	your	solution	to	the	running	time	of	GREEDY-ACTIVITY-SELECTOR.

16.1-2

Suppose	that	instead	of	always	selecting	the	first	activity	to	finish,	we	instead	select	the
last	activity	to	start	that	is	compatible	with	all	previously	selected	activities.	Describe
how	this	approach	is	a	greedy	algorithm,	and	prove	that	it	yields	an	optimal	solution.

The	same.

16.1-3

Not	just	any	greedy	approach	to	the	activity-selection	problem	produces	a	maximum-
size	set	of	mutually	compatible	activities.	Give	an	example	to	show	that	the	approach	of
selecting	the	activity	of	least	duration	from	among	those	that	are	compatible	with
previously	selected	activities	does	not	work.	Do	the	same	for	the	approaches	of	always
selecting	the	compatible	activity	that	overlaps	the	fewest	other	remaining	activities	and
always	selecting	the	compatible	remaining	activity	with	the	earliest	start	time.

Least	duration:	[1,	5],	[4,	7],	[6,	10]

Overlap	fewest:	[1,	4],	[5,	7],	[8,	10],	[1,	2],	[3,	5],	[6,	8],	[9,	10],	...

Earliest	start:	[1,	6],	[5,	10],	[2,	4]

16.1-4

16.1	An	activity-selection	problem
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Suppose	that	we	have	a	set	of	activities	to	schedule	among	a	large	number	of	lecture
halls,	where	any	activity	can	take	place	in	any	lecture	hall.	We	wish	to	schedule	all	the
activities	using	as	few	lecture	halls	as	possible.	Give	an	efficient	greedy	algorithm	to
determine	which	activity	should	use	which	lecture	hall.

(This	problem	is	also	known	as	the	interval-graph	coloring	problem.	We	can	create
an	interval	graph	whose	vertices	are	the	given	activities	and	whose	edges	connect
incompatible	activities.	The	smallest	number	of	colors	required	to	color	every	vertex	so
that	no	two	adjacent	vertices	have	the	same	color	corresponds	to	finding	the	fewest
lecture	halls	needed	to	schedule	all	of	the	given	activities.)

Sort	the	intervals	by	start	time,	if	the	start	time	of	one	interval	is	the	same	as	the	finish	time
of	the	other	interval,	we	should	assume	the	finish	time	is	less	than	the	start	time.	From	left	to
right,	add	1	when	there	is	a	start	time	and	subtract	1	when	there	is	a	finish	time,	the	number
of	halls	needed	is	the	maximum	number	of	the	count.

16.1-5

Consider	a	modification	to	the	activity-selection	problem	in	which	each	activity	 	has,
in	addition	to	a	start	and	finish	time,	a	value	 	.	The	objective	is	no	longer	to	maximize
the	number	of	activities	scheduled,	but	instead	to	maximize	the	total	value	of	the
activities	scheduled.	That	is,	we	wish	to	choose	a	set	 	of	compatible	activities	such

that	 	is	maximized.	Give	a	polynomial-time	algorithm	for	this	problem.

Let	 	be	the	maximum	total	value	before	time	 	,

def	activity_selection(s,	f,	v):

				dp	=	{}

				n	=	len(s)

				last	=	None

				for	i	in	sorted(list(set(s	+	f))):

								if	last	is	None:

												dp[i]	=	0

								else:

												dp[i]	=	last

												for	j	in	range(n):

																if	f[j]	<=	i:

																				dp[i]	=	max(dp[i],	dp[s[j]]	+	v[j])

								last	=	dp[i]

				return	last

16.1	An	activity-selection	problem
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16.2	Elements	of	the	greedy	strategy

16.2-1

Prove	that	the	fractional	knapsack	problem	has	the	greedy-choice	property.

Obviously

16.2-2

Give	a	dynamic-programming	solution	to	the	0-1	knapsack	problem	that	runs	in

	time,	where	 	is	the	number	of	items	and	 	is	the	maximum	weight	of	items
that	the	thief	can	put	in	his	knapsack.

def	zero_one_knapsack(v,	w,	W):

				n	=	len(v)

				dp	=	[0]	*	(W	+	1)

				for	i	in	range(n):

								for	j	in	range(W,	w[i]	-	1,	-1):

												dp[j]	=	max(dp[j],	dp[j	-	w[i]]	+	v[i])

				return	dp[W]

16.2-3

Suppose	that	in	a	0-1	knapsack	problem,	the	order	of	the	items	when	sorted	by
increasing	weight	is	the	same	as	their	order	when	sorted	by	decreasing	value.	Give	an
efficient	algorithm	to	find	an	optimal	solution	to	this	variant	of	the	knapsack	problem,
and	argue	that	your	algorithm	is	correct.

Suppose	in	an	optimal	solution	we	take	an	item	with	 	,	 	,	and	drop	an	item	with	 	,
	,	and	 	,	 	,	we	can	substitude	 	with	 	and	get	a	better	solution.

Therefore	we	should	always	choose	the	items	with	the	greatest	values.

16.2-4

16.2	Elements	of	the	greedy	strategy
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Professor	Gekko	has	always	dreamed	of	inline	skating	across	North	Dakota.	He	plans
to	cross	the	state	on	highway	U.S.	2,	which	runs	from	Grand	Forks,	on	the	eastern
border	with	Minnesota,	to	Williston,	near	the	western	border	withMontana.	The
professor	can	carry	two	liters	of	water,	and	he	can	skate	 	miles	before	running	out	of
water.	(Because	North	Dakota	is	relatively	flat,	the	professor	does	not	have	to	worry
about	drinking	water	at	a	greater	rate	on	uphill	sections	than	on	flat	or	downhill
sections.)	The	professor	will	start	in	Grand	Forks	with	two	full	liters	of	water.	His	official
North	Dakota	state	map	shows	all	the	places	along	U.S.	2	at	which	he	can	refill	his
water	and	the	distances	between	these	locations.

The	professor's	goal	is	to	minimize	the	number	of	water	stops	along	his	route	across
the	state.	Give	an	efficient	method	by	which	he	can	determine	which	water	stops	he
should	make.	Prove	that	your	strategy	yields	an	optimal	solution,	and	give	its	running
time.

Go	to	the	furthest	stop	within	 	miles	in	each	iteration.

16.2-5

Describe	an	efficient	algorithm	that,	given	a	set	 	of	points	on	the
real	line,	determines	the	smallest	set	of	unit-length	closed	intervals	that	contains	all	of
the	given	points.	Argue	that	your	algorithm	is	correct.

Place	the	left	side	of	the	unit-interval	to	the	first	left-most	uncovered	point	in	each	iteration.

16.2-6	

Show	how	to	solve	the	fractional	knapsack	problem	in	 	time.

Choose	the	median	of	 	in	 	,	partition	the	sequence	with	the	median	in	 	,	if
the	sum	of	weights	in	the	more	valuable	side	is	less	or	equal	to	 	,	we	take	all	the	items	in
this	side	and	repeat	the	steps	in	the	other	side;	otherwise	we	repeat	the	steps	in	the	more

valuable	side.	The	algorithm	runs	in	 	,	which	is	 	.

16.2-7

16.2	Elements	of	the	greedy	strategy
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Suppose	you	are	given	two	sets	 	and	 	,	each	containing	 	positive	integers.	You
can	choose	to	reorder	each	set	however	you	like.	After	reordering,	let	 	be	the	 	th

element	of	set	 	,	and	let	 	be	the	 	th	element	of	set	 	.	You	then	receive	a	payoff	of

	.	Give	an	algorithm	that	will	maximize	your	payoff.	Prove	that	your	algorithm
maximizes	the	payoff,	and	state	its	running	time.

Sort	 	and	 	into	monotonically	increasing/decreasing	order.

16.2	Elements	of	the	greedy	strategy
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16.3	Huffman	codes

16.3-1

Explain	why,	in	the	proof	of	Lemma	16.2,	if	 	,	then	we	must	have

	.

16.3-2

Prove	that	a	binary	tree	that	is	not	full	cannot	correspond	to	an	optimal	prefix	code.

16.3-3

What	is	an	optimal	Huffman	code	for	the	following	set	of	frequencies,	based	on	the	first
8	Fibonacci	numbers?

a:1	b:1	c:2	d:3	e:5	f:8	g:13	h:21

Can	you	generalize	your	answer	to	find	the	optimal	code	when	the	frequencies	are	the
first	 	Fibonacci	numbers?

a:	1111111
b:	1111110
c:	111110
d:	11110
e:	1110
f:	110
g:	10
h:	0

16.3-4

Prove	that	we	can	also	express	the	total	cost	of	a	tree	for	a	code	as	the	sum,	over	all
internal	nodes,	of	the	combined	frequencies	of	the	two	children	of	the	node.

16.3-5

Prove	that	if	we	order	the	characters	in	an	alphabet	so	that	their	frequencies	are
monotonically	decreasing,	then	there	exists	an	optimal	code	whose	codeword	lengths
are	monotonically	increasing.

16.3	Huffman	codes
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16.3-6

Suppose	we	have	an	optimal	prefix	code	on	a	set	 	of
characters	and	we	wish	to	transmit	this	code	using	as	few	bits	as	possible.	Show	how

to	represent	any	optimal	prefix	code	on	 	using	only	 	bits.

Use	one	bit	for	representing	internal	or	leaf	node,	which	is	 	bits.

16.3-7

Generalize	Huffman’s	algorithm	to	ternary	codewords	(i.e.,	codewords	using	the
symbols	0,	1,	and	2),	and	prove	that	it	yields	optimal	ternary	codes.

Merge	three	nodes.

16.3-8

Suppose	that	a	data	file	contains	a	sequence	of	8-bit	characters	such	that	all	256
characters	are	about	equally	common:	the	maximum	character	frequency	is	less	than
twice	the	minimum	character	frequency.	Prove	that	Huffman	coding	in	this	case	is	no
more	efficient	than	using	an	ordinary	8-bit	fixed-length	code.

Full	binary	tree,	another	8-bit	encoding.

16.3-9

Show	that	no	compression	scheme	can	expect	to	compress	a	file	of	randomly	chosen
8-bit	characters	by	even	a	single	bit.

16.3	Huffman	codes
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16.4	Matroids	and	greedy	methods

16.4-1

Show	that	 	is	a	matroid,	where	 	is	any	finite	set	and	 	is	the	set	of	all

subsets	of	 	of	size	at	most	 	,	where	 	.

16.4-2	

Given	an	 	matrix	 	over	some	field	(such	as	the	reals),	show	that	 	is	a
matroid,	where	 	is	the	set	of	columns	of	 	and	 	if	and	only	if	the	columns	in	
are	linearly	independent.

16.4-3	

Show	that	if	 	is	a	matroid,	then	 	is	a	matroid,	where

	contains	some	maximal	 	.

That	is,	the	maximal	independent	sets	of	 	are	just	the	complements	of	the

maximal	independent	sets	of	 	.

16.4-4	

Let	 	be	a	finite	set	and	let	 	be	a	partition	of	 	into	nonempty	disjoint

subsets.	Define	the	structure	 	by	the	condition	that	

for	 	.	Show	that	 	is	a	matroid.	That	is,	the	set	of	all	sets	 	that
contain	at	most	one	member	of	each	subset	in	the	partition	determines	the	independent
sets	of	a	matroid.

16.4-5

Show	how	to	transform	the	weight	function	of	a	weighted	matroid	problem,	where	the
desired	optimal	solution	is	a	minimum-weight	maximal	independent	subset,	to	make	it	a
standard	weighted-matroid	problem.	Argue	carefully	that	your	transformation	is	correct.

16.4	Matroids	and	greedy	methods
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16.5	A	task-scheduling	problem	as	a	matroid

16.5-1

Solve	the	instance	of	the	scheduling	problem	given	in	Figure	16.7,	but	with	each

penalty	 	replaced	by	 	.

1 2 3 4 5 6 7

4 2 4 3 1 4 6

10 20 30 40 50 60 70

	,	 	.

16.5-2

Show	how	to	use	property	2	of	Lemma	16.12	to	determine	in	time	 	whether	or
not	a	given	set	 	of	tasks	is	independent.

Inserting	by	deadline.

16.5	A	task-scheduling	problem	as	a	matroid
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Problems

16-1	Coin	changing

Consider	the	problem	of	making	change	for	 	cents	using	the	fewest	number	of	coins.
Assume	that	each	coin's	value	is	an	integer.

a.	Describe	a	greedy	algorithm	to	make	change	consisting	of	quarters,	dimes,	nickels,
and	pennies.	Prove	that	your	algorithm	yields	an	optimal	solution.

Use	the	coin	as	large	as	possible.

b.	Suppose	that	the	available	coins	are	in	the	denominations	that	are	powers	of	 	,	i.e.,

the	denominations	are	 	for	some	integers	 	and	 	.	Show
that	the	greedy	algorithm	always	yields	an	optimal	solution.

Same.

c.	Give	a	set	of	coin	denominations	for	which	the	greedy	algorithm	does	not	yield	an
optimal	solution.	Your	set	should	include	a	penny	so	that	there	is	a	solution	for	every
value	of	 	.

For	18,	the	greedy	algorithm	yields	9	coins,	the	optimal	solution	is	 	,	which	contains	2
coins.

d.	Give	an	 	-time	algorithm	that	makes	change	for	any	set	of	 	different	coin
denominations,	assuming	that	one	of	the	coins	is	a	penny.

Let	 	be	the	minimal	number	of	coins	of	amount	 	,	 	.

16-2	Scheduling	to	minimize	average	completion	time

Problems
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Suppose	you	are	given	a	set	 	of	tasks,	where	task	 	requires
	units	of	processing	time	to	complete,	once	it	has	started.	You	have	one	computer	on

which	to	run	these	tasks,	and	the	computer	can	run	only	one	task	at	a	time.	Let	 	be
the	completion	time	of	task	 	,	that	is,	the	time	at	which	task	 	completes
processing.	Your	goal	is	to	minimize	the	average	completion	time,	that	is,	to	minimize

	.	For	example,	suppose	there	are	two	tasks,	 	and	 	,	with

	and	 	,	and	consider	the	schedule	in	which	 	runs	first,	followed	by

	.	Then	 	,	 	,	and	the	average	completion	time	is	 	.

If	task	 	runs	first,	however,	then	 	,	 	,	and	the	average	completion	time

is	 	.

a.	Give	an	algorithm	that	schedules	the	tasks	so	as	to	minimize	the	average	completion
time.	Each	task	must	run	non-preemptively,	that	is,	once	task	 	starts,	it	must	run
continuously	for	 	units	of	time.	Prove	that	your	algorithm	minimizes	the	average
completion	time,	and	state	the	running	time	of	your	algorithm.

Suppose	a	permutation	of	 	is	 	,	the	total	completion	time	is

	.	The	optimal	solution	is	to	sort	 	into	increasing	order.

b.	Suppose	now	that	the	tasks	are	not	all	available	at	once.	That	is,	each	task	cannot
start	until	its	release	time	 	.	Suppose	also	that	we	allow	preemption,	so	that	a	task
can	be	suspended	and	restarted	at	a	later	time.	For	example,	a	task	 	with	processing

time	 	and	release	time	 	might	start	running	at	time	 	and	be	preempted
at	time	 	.	It	might	then	resume	at	time	 	but	be	preempted	at	time	 	,	and	it	might
finally	resume	at	time	 	and	complete	at	time	 	.	Task	 	has	run	for	a	total	of	 	time
units,	but	its	running	time	has	been	divided	into	three	pieces.	In	this	scenario,	 	's
completion	time	is	 	.	Give	an	algorithm	that	schedules	the	tasks	so	as	to	minimize
the	average	completion	time	in	this	new	scenario.	Prove	that	your	algorithm	minimizes
the	average	completion	time,	and	state	the	running	time	of	your	algorithm.

Preemption	will	not	yield	a	better	solution	if	there	is	no	new	task.	Each	time	there	is	a	new
task,	assume	that	the	current	running	task	is	preempted,	let	the	current	condition	be	a	new
scheduling	task	without	preemption.

16-3	Acyclic	subgraphs

Problems
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a.	The	incidence	matrix	for	an	undirected	graph	 	is	a	 	matrix

	such	that	 	if	edge	 	is	incident	on	vertex	 	,	and	 	otherwise.
Argue	that	a	set	of	columns	of	 	is	linearly	independent	over	the	field	of	integers
modulo	2	if	and	only	if	the	corresponding	set	of	edges	is	acyclic.	Then,	use	the	result	of

Exercise	16.4-2	to	provide	an	alternate	proof	that	 	of	part	(a)	is	a	matroid.

b.	Suppose	that	we	associate	a	nonnegative	weight	 	with	each	edge	in	an

undirected	graph	 	.	Give	an	efficient	algorithm	to	find	an	acyclic	subset	of
	of	maximum	total	weight.

Maximum	spanning	tree.

c.	Let	 	be	an	arbitrary	directed	graph,	and	let	 	be	defined	so	that
	if	and	only	if	 	does	not	contain	any	directed	cycles.	Give	an	example	of	a

directed	graph	 	such	that	the	associated	system	 	is	not	a	matroid.	Specify
which	defining	condition	for	a	matroid	fails	to	hold.

d.	The	incidence	matrix	for	a	directed	graph	 	with	no	self-loops	is	a

	matrix	 	such	that	 	if	edge	 	leaves	vertex	 	,	 	if

edge	 	enters	vertex	 	,	and	 	otherwise.	Argue	that	if	a	set	of	columns	of	
is	linearly	independent,	then	the	corresponding	set	of	edges	does	not	contain	a	directed
cycle.

e.	Exercise	16.4-2	tells	us	that	the	set	of	linearly	independent	sets	of	columns	of	any
matrix	 	forms	a	matroid.	Explain	carefully	why	the	results	of	parts	(d)	and	(e)	are	not
contradictory.	How	can	there	fail	to	be	a	perfect	correspondence	between	the	notion	of
a	set	of	edges	being	acyclic	and	the	notion	of	the	associated	set	of	columns	of	the
incidence	matrix	being	linearly	independent?

16-4	Scheduling	variations

Problems
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Consider	the	following	algorithm	for	the	problem	from	Section	16.5	of	scheduling	unit-
time	tasks	with	deadlines	and	penalties.	Let	all	 	time	slots	be	initially	empty,	where
time	slot	 	is	the	unit-length	slot	of	time	that	finishes	at	time	 	.	We	consider	the	tasks	in

order	of	monotonically	decreasing	penalty.	When	considering	task	 	,	if	there	exists	a

time	slot	at	or	before	 	's	deadline	 	that	is	still	empty,	assign	 	to	the	latest	such

slot,	filling	it.	If	there	is	no	such	slot,	assign	task	 	to	the	latest	of	the	as	yet	unfilled
slots.

a.	Argue	that	this	algorithm	always	gives	an	optimal	answer.

b.	Use	the	fast	disjoint-set	forest	presented	in	Section	21.3	to	implement	the	algorithm
efficiently.	Assume	that	the	set	of	input	tasks	has	already	been	sorted	into
monotonically	decreasing	order	by	penalty.	Analyze	the	running	time	of	your
implementation.

16-5	Off-line	caching

a.	Write	pseudocode	for	a	cache	manager	that	uses	the	furthest-in-future	strategy.	The

input	should	be	a	sequence	 	of	requests	and	a	cache	size	 	,	and	the
output	should	be	a	sequence	of	decisions	about	which	data	element	(if	any)	to	evict
upon	each	request.	What	is	the	running	time	of	your	algorithm?

b.	Show	that	the	off-line	caching	problem	exhibits	optimal	substructure.

c.	Prove	that	furthest-in-future	produces	the	minimum	possible	number	of	cache
misses.
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17.1	Aggregate	analysis

17.1-1

If	the	set	of	stack	operations	included	a	MULTIPUSH	operation,	which	pushses	 	items

onto	the	stack,	would	the	 	bound	on	the	amortized	cost	of	stack	operations
continue	to	hold?

No.

17.1-2

Show	that	if	a	DECREMENT	operatoin	were	included	in	the	 	-bit	counter	example,	

operations	could	cost	as	much	as	 	time.

Increment	and	decrement	repeatly	on	 	.

17.1-3

Suppose	we	perform	a	sequence	of	 	operations	on	a	data	structure	in	which	the	 	th
operation	costs	 	if	 	is	an	exact	power	of	 	,	and	 	otherwise.	Use	aggregate	analysis
to	determine	the	amortized	cost	per	operation.

17.1	Aggregate	analysis
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17.2	The	accounting	method

17.2-1

Suppose	we	perform	a	sequence	of	stack	operations	on	a	stack	whose	size	never
exceeds	 	.	After	every	 	operations,	we	make	a	copy	of	the	entire	stack	for	backup
purposes.	Show	that	the	cost	of	 	stack	operations,	including	copying	the	stack,	is

	by	assigning	suitable	amortized	costs	to	the	various	stack	operations.

PUSH:	 	,	POP:	 	,	COPY:	 	.

17.2-2

Redo	Exercise	17.1-3	using	an	accounting	method	of	analysis.

Insert:	 	.

17.2-3

Suppose	we	wish	not	only	to	increment	a	counter	but	also	to	reset	it	to	zero	(i.e.,	make

all	bits	in	it	0).	Counting	the	time	to	examine	or	modify	a	bit	as	 	,	show	how	to
implement	a	counter	as	an	array	of	bits	so	that	any	sequence	of	 	INCREMENT	and

RESET	operations	takes	time	 	on	an	initially	zero	counter.

Twice	cost	of	each	bit.

17.2	The	accounting	method
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17.3	The	potential	method

17.3-1

Suppose	we	have	a	potential	function	 	such	that	 	for	all	 	,	but

	.	Show	that	there	exists	a	potential	fuction	 	such	that	 	,

	for	all	 	,	and	the	amortized	costs	using	 	are	the	same	as	the
amortized	costs	using	 	.

17.3-2

Redo	Exercise	17.1-3	using	a	potential	method	of	analysis.

17.3-3

Consider	an	ordinary	binary	min-heap	data	structure	with	 	elements	supporting	the

instructions	INSERT	and	EXTRACT-MIN	in	 	worst-case	time.	Give	a	potential

function	 	such	that	the	amortized	cost	of	INSERT	is	 	and	the	amortized	cost

of	EXTRACT-MIN	is	 	,	and	show	that	it	works.

	number	of	elements	in	the	heap	 	.

INSERT:	 	.

EXTRACT-MIN:	 	.

17.3-4

What	is	the	total	cost	of	executing	 	of	the	stack	operations	PUSH,	POP,	and
MULTIPOP,	assuming	that	the	stack	begins	with	 	objects	and	finishes	with	
objects?

17.3	The	potential	method
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17.3-5

Suppose	that	a	counter	begins	at	a	number	with	 	1s	in	its	binary	representation,	rather

than	at	0.	Show	that	the	cost	of	performing	 	INCREMENT	operations	is	 	if

	.	(Do	not	assume	that	 	is	constant.)

17.3-6

Show	how	to	implement	a	queue	with	two	ordinary	stacks	(Exercise	10.1-6)	so	that	the

amortized	cost	of	each	ENQUEUE	and	each	DEQUEUE	operation	is	 	.

	number	of	elements	in	the	first	stack.

17.3-7

Design	a	data	structure	to	support	the	following	two	operations	for	a	dynamic	multiset	
of	integers,	which	allows	duplicate	values:

INSERT	 	inserts	 	into	 	.

DELETE-LARGER-HALF	 	deletes	the	largest	 	elements	from	 	.

Explain	how	to	implement	this	data	structure	so	that	any	sequence	of	 	INSERT	and

DELETE-LARGER-HALF	operations	runs	in	 	time.	Your	implementation	should

also	include	a	way	to	output	the	elements	of	 	in	 	time.

An	array	of	elements.

INSERT:	push	the	element	to	the	back	of	the	array.

17.3	The	potential	method
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DELETE-LARGER-HALF:	find	the	median	in	 	and	delete	the	first	 	elements
that	are	larger	or	equal	to	the	median.

17.3	The	potential	method
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17.4	Dynamic	tables

17.4-1

Suppose	that	we	wish	to	implement	a	dynamic,	open-address	hash	table.	Why	might
we	consider	the	table	to	be	full	when	its	load	factor	reaches	some	value	 	that	is	strictly
less	than	1?	Describe	briefly	how	to	make	insertion	into	a	dynamic,	open-address	hash
table	run	in	such	a	way	that	the	expected	value	of	the	amortized	cost	per	insertion	is

	.	Why	is	the	expected	value	of	the	actual	cost	per	insertion	not	necessarily	
for	all	insertions?

17.4-2

Show	that	if	 	and	the	 	th	operation	on	a	dynamic	table	is	TABLE-
DELETE,	then	the	amortized	cost	of	the	operation	with	respect	to	the	potential	function
(17.6)	is	bounded	above	by	a	constant.

17.4-3

Suppose	that	instead	of	contracting	a	table	by	halving	its	size	when	its	load	factor	drops

below	 	,	we	contract	it	by	multiplying	its	size	by	 	when	its	load	factor	drops

below	 	.	Using	the	potential	function

	,

show	that	the	amortized	cost	of	a	TABLE-DELETE	that	uses	this	strategy	is	bounded
above	by	a	constant.

If	 	,

17.4	Dynamic	tables
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If	the	 	th	operation	does	trigger	a	contraction,

17.4	Dynamic	tables
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Problems

17-1	Bit-reversed	binary	counter

Chapter	30	examines	an	important	algorithm	called	the	fast	Fourier	transform,	or	FFT.
The	first	step	of	the	FFT	algorithm	performs	a	bit-reversal	permutation	on	an	input

array	 	whose	length	is	 	for	some	nonnegative	integer	 	.	This
permutation	swaps	elements	whose	indices	have	binary	representations	that	are	the
reverse	of	each	other.

We	can	express	each	index	 	as	a	 	-bit	sequence	 	,	where

	.	We	define

	;

thus,

	.

For	example,	if	 	(or,	equivalently,	 	),	then	 	,	since	the	 	-
bit	representation	of	 	is	 	,	which	when	reversed	gives	 	,	the	 	-bit
representation	of	 	.

a.	Given	a	function	 	that	runs	in	 	time,	write	an	algorithm	to	perform	the	bit-

reversal	permutation	on	an	array	of	length	 	in	 	time.

def	rev_k(k,	a):

				x	=	0

				for	_	in	xrange(k):

								x	<<=	1

								x	+=	a	&	1

								a	>>=	1

				return	x
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We	can	use	an	algorithm	based	on	an	amortized	analysis	to	improve	the	running	time
of	the	bit-reversal	permutation.	We	maintain	a	"bit-reversed	counter"	and	a	procedure
BIT-REVERSED-INCREMENT	that,	when	given	a	bit-reversed-counter	value	 	,

produces	 	.	If	 	,	for	example,	and	the	bit-reversed	counter
starts	at	 	,	then	successive	calls	to	BIT-REVERSED-INCREMENT	produce	the
sequence

	.

b.	Assume	that	the	words	in	your	computer	store	 	-bit	values	and	that	in	unit	time,
your	computer	can	manipulate	the	binary	values	with	operations	such	as	shifting	left	or
right	by	arbitrary	amounts,	bitwise-AND,	bitwise-OR,	etc.	Describe	an	implementation	of
the	BIT-REVERSED-INCREMENT	procedure	that	allows	the	bit-reversal	permutation

on	an	 	-element	array	to	be	performed	in	a	total	of	 	time.

class	BitReversedCounter:

				def	__init__(self,	k):

								self.k	=	k

								self.c	=	0

				def	increment(self):

								for	i	in	xrange(self.k	-	1,	-1,	-1):

												self.c	^=	1	<<	i

												if	self.c	&	(1	<<	i)	>	0:

																break

								return	self.c

c.	Suppose	that	you	can	shift	a	word	left	or	right	by	only	one	bit	in	unit	time.	Is	it	still

possible	to	implement	an	 	-time	bit-reversal	permutation?

class	BitReversedCounter:

				def	__init__(self,	k):

								self.k	=	k

								self.c	=	0

								self.n	=	1	<<	(self.k	-	1)

				def	increment(self):

								i	=	self.n

								for	_	in	xrange(self.k	-	1,	-1,	-1):

												self.c	^=	i

												if	self.c	&	i	>	0:

																break

												i	>>=	1

								return	self.c
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17-2	Making	binary	search	dynamic

Binary	search	of	a	sorted	array	takes	logarithmic	search	time,	but	the	time	to	insert	a
new	element	is	linear	in	the	size	of	the	array.	We	can	improve	the	time	for	insertion	by
keeping	several	sorted	arrays.

Specifically,	suppose	that	we	wish	to	support	SEARCH	and	INSERT	on	a	set	of	

elements.	Let	 	,	and	let	the	binary	representation	of	 	be

	.	We	have	 	sorted	arrays	 	,	where	for

	,	the	length	of	array	 	is	 	.	Each	array	is	either	full	or	empty,

depending	on	whether	 	or	 	,	respectively.	The	total	number	of	elements

held	in	all	 	arrays	is	therefore	 	.	Although	each	individual	array	is
sorted,	elements	in	different	arrays	bear	no	particular	relationship	to	each	other.

a.	Describe	how	to	perform	the	SEARCH	operation	for	this	data	structure.	Analyze	its
worst-case	running	time.

b.	Describe	how	to	perform	the	INSERT	operation.	Analyze	its	worst-case	and
amortized	running	times.

Merge	sort.

Worst:	

Amortized:	

c.	Discuss	how	to	implement	DELETE.

17-3	Amortized	weight-balanced	trees
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Consider	an	ordinary	binary	search	tree	augmented	by	adding	to	each	node	 	the
attribute	 	giving	the	number	of	keys	stored	in	the	subtree	rooted	at	 	.	Let	 	be

a	constant	in	the	range	 	.	We	say	that	a	given	node	 	is	 	-balanced	if

	and	 	.	The	tree	as	a
whole	is	 	-balanced	if	every	node	in	the	tree	is	 	-balanced.	The	following	amortized
approach	to	maintaining	weight-balanced	trees	was	suggested	by	G.	Varghese.

a.	A	 	-balanced	tree	is,	in	a	sense,	as	balanced	as	it	can	be.	Given	a	node	 	in	an
arbitrary	binary	search	tree,	show	how	to	rebuild	the	subtree	rooted	at	 	so	that	it

becomes	 	-balanced.	Your	algorithm	should	run	in	time	 	,	and	it	can

use	 	auxiliary	storage.

Choose	the	middle	node	as	the	root.

b.	Show	that	performing	a	search	in	an	 	-node	 	-balanced	binary	search	tree	takes

	worst-case	time.

Let	 	,	 	,	 	.

For	the	remainder	of	this	problem,	assume	that	the	constant	 	is	strictly	greater	than

	.	Suppose	that	we	implement	INSERT	and	DELETE	as	usual	for	an	 	-node
binary	search	tree,	except	that	after	every	such	operation,	if	any	node	in	the	tree	is	no
longer	 	-balanced,	then	we	"rebuild"	the	subtree	rooted	at	the	highest	such	node	in

the	tree	so	that	it	becomes	 	-balanced.

We	shall	analyze	this	rebuilding	scheme	using	the	potential	method.	For	a	node	 	in	a
binary	search	tree	 	,	we	define

	,

and	we	define	the	potential	of	 	as

	,

where	 	is	a	sufficiently	large	constant	that	depends	on	 	.

c.	Argue	that	any	binary	search	tree	has	nonnegative	potential	and	that	a	 	-
balanced	tree	has	potential	0.

	:	nonnegative	potential.
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	-balanced:	 	,	 	.

d.	Suppose	that	 	units	of	potential	can	pay	for	rebuilding	an	 	-node	subtree.	How

large	must	 	be	in	terms	of	 	in	order	for	it	to	take	 	amortized	time	to	rebuild	a
subtree	that	is	not	 	-balanced?

e.	Show	that	inserting	a	node	into	or	deleting	a	node	from	an	 	-node	 	-balanced	tree

costs	 	amortized	time.
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17-4	The	cost	of	restructuring	red-black	trees

There	are	four	basic	operations	on	red-black	trees	that	perform	structural
modifications:	node	insertions,	node	deletions,	rotations,	and	color	changes.	We	have

seen	that	RB-INSERT	and	RB-DELETE	use	only	 	rotations,	node	insertions,	and
node	deletions	to	maintain	the	red-black	properties,	but	they	may	make	many	more
color	changes.

a.	Describe	a	legal	red-black	tree	with	 	nodes	such	that	calling	RB-INSERT	to	add	the

	st	node	causes	 	color	changes.	Then	describe	a	legal	red-black	tree

with	 	nodes	for	which	calling	RB-DELETE	on	a	particular	node	causes	 	color
changes.

Insert:	a	complete	red-black	tree	in	which	all	nodes	have	different	color	with	their	parents.

Delete:	a	complete	red-black	tree	in	which	all	nodes	are	black.

Although	the	worst-case	number	of	color	changes	per	operation	can	be	logarithmic,	we
shall	prove	that	any	sequence	of	 	RB-INSERT	and	RB-DELETE	operations	on	an

initially	empty	red-black	tree	causes	 	structural	modifications	in	the	worst	case.
Note	that	we	count	each	color	change	as	a	structural	modification.

b.	Some	of	the	cases	handled	by	the	main	loop	of	the	code	of	both	RB-INSERT-FIXUP
and	RB-DELETE-FIXUP	are	terminating:	once	encountered,	they	cause	the	loop	to
terminate	after	a	constant	number	of	additional	operations.	For	each	of	the	cases	of
RB-INSERT-FIXUP	and	RB-DELETE-FIXUP,	specify	which	are	terminating	and	which
are	not.

RB-INSERT-FIXUP:	all	cases	except	for	case	1.

RB-DELETE-FIXUP:	case	2.

We	shall	first	analyze	the	structural	modifications	when	only	insertions	are	performed.

Let	 	be	a	red-black	tree,	and	define	 	to	be	the	number	of	red	nodes	in	 	.
Assume	that	1	unit	of	potential	can	pay	for	the	structural	modifications	performed	by
any	of	the	three	cases	of	RB-INSERT-FIXUP.

c.	Let	 	be	the	result	of	applying	Case	1	of	RB-INSERT-FIXUP	to	 	.	Argue	that

	.

Parent	and	uncle:	red	to	black.

Grandparent:	black	to	red.
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d.	When	we	insert	a	node	into	a	red-black	tree	using	RB-INSERT,	we	can	break	the
operation	into	three	parts.	List	the	structural	modifications	and	potential	changes
resulting	from	lines	1–16	of	RB-INSERT,	from	nonterminating	cases	of	RB-INSERT-
FIXUP,	and	from	terminating	cases	of	RB-INSERT-FIXUP.

Case	1:	decrease	by	1.

Case	2	&	3:	no	effect.

e.	Using	part	(d),	argue	that	the	amortized	number	of	structural	modifications	performed

by	any	call	of	RB-INSERT	is	 	.

We	now	wish	to	prove	that	there	are	 	structural	modifications	when	there	are
both	insertions	and	deletions.	Let	us	define,	for	each	node	 	,

Now	we	redefine	the	potential	of	a	red-black	tree	 	as

	,

and	let	 	be	the	tree	that	results	from	applying	any	nonterminating	case	of	RB-
INSERT-FIXUP	or	RB-DELETE-FIXUP	to	 	.

f.	Show	that	 	for	all	nonterminating	cases	of	RB-INSERT-FIXUP.
Argue	that	the	amortized	number	of	structural	modifications	performed	by	any	call	of

RB-INSERT-FIXUP	is	 	.

g.	Show	that	 	for	all	nonterminating	cases	of	RB-DELETE-
FIXUP.	Argue	that	the	amortized	number	of	structural	modifications	performed	by	any

call	of	RB-DELETE-FIXUP	is	 	.
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h.	Complete	the	proof	that	in	the	worst	case,	any	sequence	of	 	RB-INSERT	and	RB-

DELETE	operations	performs	 	structural	modifications.

17-5	Competitive	analysis	of	self-organizing	lists	with
move-to-front

A	self-organizing	list	is	a	linked	list	of	 	elements,	in	which	each	element	has	a	unique
key.	When	we	search	for	an	element	in	the	list,	we	are	given	a	key,	and	we	want	to	find
an	element	with	that	key.

A	self-organizing	list	has	two	important	properties:

1.	To	find	an	element	in	the	list,	given	its	key,	we	must	traverse	the	list	from	the
beginning	until	we	encounter	the	element	with	the	given	key.	If	that	element	is	the	 	th
element	from	the	start	of	the	list,	then	the	cost	to	find	the	element	is	 	.

2.	We	may	reorder	the	list	elements	after	any	operation,	according	to	a	given	rule	with	a
given	cost.	We	may	choose	any	heuristic	we	like	to	decide	how	to	reorder	the	list.

Assume	that	we	start	with	a	given	list	of	 	elements,	and	we	are	given	an	access

sequence	 	of	keys	to	find,	in	order.	The	cost	of	the	sequence
is	the	sum	of	the	costs	of	the	individual	accesses	in	the	sequence.

Out	of	the	various	possible	ways	to	reorder	the	list	after	an	operation,	this	problem
focuses	on	transposing	adjacent	list	elements-switching	their	positions	in	the	list—with
a	unit	cost	for	each	transpose	operation.	You	will	show,	by	means	of	a	potential
function,	that	a	particular	heuristic	for	reordering	the	list,	move-to-front,	entails	a	total
cost	no	worse	than	4	times	that	of	any	other	heuristic	for	maintaining	the	list	order—
even	if	the	other	heuristic	knows	the	access	sequence	in	advance!	We	call	this	type	of
analysis	a	competitive	analysis.

For	a	heuristic	 	and	a	given	initial	ordering	of	the	list,	denote	the	access	cost	of

sequence	 	by	 	Let	 	be	the	number	of	accesses	in	 	.

a.	Argue	that	if	heuristic	 	does	not	know	the	access	sequence	in	advance,	then	the

worst-case	cost	for	 	on	an	access	sequence	 	is	 	.

Always	last.

Problems	2

369



With	the	move-to-front	heuristic,	immediately	after	searching	for	an	element	 	,	we
move	 	to	the	first	position	on	the	list	(i.e.,	the	front	of	the	list).

Let	 	denote	the	rank	of	element	 	in	list	 	,	that	is,	the	position	of	 	in	list	

.	For	example,	if	 	is	the	fourth	element	in	 	,	then	 	.	Let	 	denote	the
cost	of	access	 	using	the	move-to-front	heuristic,	which	includes	the	cost	of	finding
the	element	in	the	list	and	the	cost	of	moving	it	to	the	front	of	the	list	by	a	series	of
transpositions	of	adjacent	list	elements.

b.	Show	that	if	 	accesses	element	 	in	list	 	using	the	move-to-front	heuristic,	then

	.

Access:	

Move:	

Now	we	compare	move-to-front	with	any	other	heuristic	 	that	processes	an	access
sequence	according	to	the	two	properties	above.	Heuristic	 	may	transpose	elements
in	the	list	in	any	way	it	wants,	and	it	might	even	know	the	entire	access	sequence	in
advance.

Let	 	be	the	list	after	access	 	using	move-to-front,	and	let	 	be	the	list	after
access	 	using	heuristic	 	.	We	denote	the	cost	of	access	 	by	 	for	move-to-front

and	by	 	for	heuristic	 	.	Suppose	that	heuristic	 	performs	 	transpositions	during
access	 	.

c.	In	part	(b),	you	showed	that	 	.	Now	show	that

	.

Access:	

Move:	
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We	define	an	inversion	in	list	 	as	a	pair	of	elements	 	and	 	such	that	 	precedes	

in	 	and	 	precedes	 	in	list	 	.	Suppose	that	list	 	has	 	inversions	after

processing	the	access	sequence	 	.	Then,	we	define	a	potential

function	 	that	maps	 	to	a	real	number	by	 	.	For	example,	if	 	has

the	elements	 	and	 	has	the	elements	 	,	then	 	has	5

inversions	 	,	and	so	 	.	Observe

that	 	for	all	 	and	that,	if	move-to-front	and	heuristic	 	start	with	the	same

list	 	,	then	 	.

d.	Argue	that	a	transposition	either	increases	the	potential	by	2	or	decreases	the
potential	by	2.

Same	before:	decrese	by	2.

Same	after:	increase	by	2.

Suppose	that	access	 	finds	the	element	 	.	To	understand	how	the	potential	changes
due	to	 	,	let	us	partition	the	elements	other	than	 	into	four	sets,	depending	on	where
they	are	in	the	lists	just	before	the	 	th	access:

Set	 	consists	of	elements	that	precede	 	in	both	 	and	 	.

Set	 	consists	of	elements	that	precede	 	in	 	and	follow	 	in	 	.

Set	 	consists	of	elements	that	follow	 	in	 	and	precede	 	in	 	.

Set	 	consists	of	elements	that	follow	 	in	both	 	and	 	.

e.	Argue	that	 	and

	.

Precede.

f.	Show	that	access	 	causes	a	change	in	potential	of

	,

where,	as	before,	heuristic	 	performs	 	transpositions	during	access	 	.

Define	the	amortized	cost	 	of	access	 	by	 	.

g.	Show	that	the	amortized	cost	 	of	access	 	is	bounded	from	above	by	 	.
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h.	Conclude	that	the	cost	 	of	access	sequence	 	with	move-to-front	is	at

most	4	times	the	cost	 	of	 	withany	other	heuristic	 	,	assuming	that	both
heuristics	start	with	the	same	list.
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18.1	Definition	of	B-trees

18.1-1

Why	don't	we	allow	a	minimum	degree	of	 	?

No	key.

18.1-2

For	what	values	of	 	is	the	tree	of	Figure	18.1	a	legal	B-tree?

2	or	3.

18.1-3

Show	all	legal	B-trees	of	minimum	degree	2	that	represent	 	.

18.1	Definition	of	B-trees
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As	a	function	of	the	minimum	degree	 	,	what	is	the	maximum	number	of	keys	that	can
be	stored	in	a	B-tree	of	height	 	?

18.1-5

Describe	the	data	structure	that	would	result	if	each	black	node	in	a	red-black	tree	were
to	absorb	its	red	children,	incorporating	their	children	with	its	own.

	,	2-3-4	tree

18.1	Definition	of	B-trees

376



18.2	Basic	operations	on	B-trees

18.2-1

Show	the	results	of	inserting	the	keys

in	order	into	an	empty	B-tree	with	minimum	degree	2.	Draw	only	the	configurations	of
the	tree	just	before	some	node	must	split,	and	also	draw	the	final	configuration.
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18.2-2

Explain	under	what	circumstances,	if	any,	redundant	DISK-READ	or	DISK-WRITE
operations	occur	during	the	course	of	executing	a	call	to	B-TREE-INSERT.	(A
redundant	DISK-READ	is	a	DISK-READ	for	a	page	that	is	already	in	memory.	A
redundant	DISK-WRITE	writes	to	disk	a	page	of	information	that	is	identical	to	what	is
already	stored	there.)

No	redundant.

18.2-3

Explain	how	to	find	the	minimum	key	stored	in	a	B-tree	and	how	to	find	the	predecessor
of	a	given	key	stored	in	a	B-tree.

class	BTreeNode:

				def	__init__(self,	t):

								self.n	=	0

								self.key	=	[None]	*	(2	*	t	-	1)

								self.c	=	[None]	*	(2	*	t)

								self.leaf	=	True

class	BTree:

				def	__init__(self,	degree):

								self.t	=	degree

								self.root	=	BTreeNode(degree)

				def	disk_read(self,	x):

								pass

				def	disk_write(self,	x):

								pass

				def	split_child(self,	x,	i):

								t	=	self.t

								z	=	BTreeNode(t)

								y	=	x.c[i]

								z.leaf	=	y.leaf

								z.n	=	t	-	1

								for	j	in	range(t	-	1):

												z.key[j]	=	y.key[j	+	t]

								if	not	y.leaf:

												for	j	in	range(t):

																z.c[j]	=	y.c[j	+	t]

								y.n	=	t	-	1

								for	j	in	range(x.n,	i	-	1,	-1):

												x.c[j	+	1]	=	x.c[j]

								x.c[i	+	1]	=	z
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								for	j	in	range(x.n	-	1,	i	-	2,	-1):

												x.key[j	+	1]	=	x.key[j]

								x.key[i]	=	y.key[t	-	1]

								x.n	+=	1

								self.disk_write(y)

								self.disk_write(z)

								self.disk_write(x)

				def	insert(self,	k):

								t	=	self.t

								r	=	self.root

								if	r.n	==	2	*	t	-	1:

												s	=	BTreeNode(t)

												self.root	=	s

												s.leaf	=	False

												s.n	=	0

												s.c[0]	=	r

												self.split_child(s,	0)

												self.insert_nonfull(s,	k)

								else:

												self.insert_nonfull(r,	k)

				def	insert_nonfull(self,	x,	k):

								t	=	self.t

								i	=	x.n	-	1

								if	x.leaf:

												while	i	>=	0	and	k	<	x.key[i]:

																x.key[i	+	1]	=	x.key[i]

																i	-=	1

												x.key[i	+	1]	=	k

												x.n	+=	1

												self.disk_write(x)

								else:

												while	i	>=	0	and	k	<	x.key[i]:

																i	-=	1

												i	+=	1

												self.disk_read(x.c[i])

												if	x.c[i].n	==	2	*	t	-	1:

																self.split_child(x,	i)

																if	k	>	x.key[i]:

																				i	+=	1

												self.insert_nonfull(x.c[i],	k)

				def	minimum(self):

								def	minimum_sub(x):

												if	x	is	None:

																return	None

												if	x.n	>	0	and	x.c[0]	is	not	None:

																return	minimum_sub(x.c[0])

												return	x.key[0]

								if	self.root.n	==	0:

												return	None

								return	minimum_sub(self.root)
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				def	predecessor(self,	k):

								def	predecessor_sub(x):

												if	x	is	None:

																return	None

												for	i	in	xrange(x.n	-	1,	-1,	-1):

																if	k	>	x.key[i]:

																				c	=	predecessor_sub(x.c[i	+	1])

																				if	c	is	None:

																								return	x.key[i]

																				return	max(c,	x.key[i])

												return	predecessor_sub(x.c[0])

								if	self.root.n	==	0:

												return	None

								return	predecessor_sub(self.root)

				def	successor(self,	k):

								def	successor_sub(x):

												if	x	is	None:

																return	None

												for	i	in	xrange(x.n):

																if	k	<	x.key[i]:

																				c	=	successor_sub(x.c[i])

																				if	c	is	None:

																								return	x.key[i]

																				return	min(c,	x.key[i])

												return	successor_sub(x.c[x.n])

								if	self.root.n	==	0:

												return	None

								return	successor_sub(self.root)

18.2-4	

Suppose	that	we	insert	the	keys	 	into	an	empty	B-tree	with	minimum
degree	2.	How	many	nodes	does	the	final	B-tree	have?

At	least	 	.

18.2-5

Since	leaf	nodes	require	no	pointers	to	children,	they	could	conceivably	use	a	different
(larger)	 	value	than	internal	nodes	for	the	same	disk	page	size.	Show	how	to	modify
the	procedures	for	creating	and	inserting	into	a	B-tree	to	handle	this	variation.

.

18.2-6
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Suppose	that	we	were	to	implement	B-TREE-SEARCH	to	use	binary	search	rather	than
linear	search	within	each	node.	Show	that	this	change	makes	the	CPU	time	required

	,	independently	of	how	 	might	be	chosen	as	a	function	of	 	.

18.2-7

Suppose	that	disk	hardware	allows	us	to	choose	the	size	of	a	disk	page	arbitrarily,	but

that	the	time	it	takes	to	read	the	disk	page	is	 	,	where	 	and	 	are	specified
constants	and	 	is	the	minimum	degree	for	a	B-tree	using	pages	of	the	selected	size.
Describe	how	to	choose	 	so	as	to	minimize	(approximately)	the	B-tree	search	time.
Suggest	an	optimal	value	of	 	for	the	case	in	which	 	milliseconds	and	
microseconds.

where	 	is	the	LambertW	function,	and	we	should	choose	 	.
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18.3	Deleting	a	key	from	a	B-tree

18.3-1

Show	the	results	of	deleting	 	,	 	,	and	 	,	in	order,	from	the	tree	of	Figure	18.8(f).

18.3-2

Write	pseudocode	for	B-TREE-DELETE.

18.3	Deleting	a	key	from	a	B-tree
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Problems

18-1	Stacks	on	secondary	storage

Consider	implementing	a	stack	in	a	computer	that	has	a	relatively	small	amount	of	fast
primary	memory	and	a	relatively	large	amount	of	slower	disk	storage.	The	operations
PUSH	and	POP	work	on	single-word	values.	The	stack	we	wish	to	support	can	grow	to
be	much	larger	than	can	fit	in	memory,	and	thus	most	of	it	must	be	stored	on	disk.

A	simple,	but	inefficient,	stack	implementation	keeps	the	entire	stack	on	disk.	We
maintain	in-memory	a	stack	pointer,	which	is	the	disk	address	of	the	top	element	on	the

stack.	If	the	pointer	has	value	 	,	the	top	element	is	the	 	th	word	on	page

	of	the	disk,	where	 	is	the	number	of	words	per	page.

To	implement	the	PUSH	operation,	we	increment	the	stack	pointer,	read	the	appropriate
page	into	memory	from	disk,	copy	the	element	to	be	pushed	to	the	appropriate	word	on
the	page,	and	write	the	page	back	to	disk.	A	POP	operation	is	similar.	We	decrement
the	stack	pointer,	read	in	the	appropriate	page	from	disk,	and	return	the	top	of	the
stack.	We	need	not	write	back	the	page,	since	it	was	not	modified.

Because	disk	operations	are	relatively	expensive,	we	count	two	costs	for	any
implementation:	the	total	number	of	disk	accesses	and	the	total	CPU	time.	Any	disk

access	to	a	page	of	 	words	incurs	charges	of	one	disk	access	and	 	CPU	time.

a.	Asymptotically,	what	is	the	worst-case	number	of	disk	accesses	for	 	stack
operations	using	this	simple	implementation?	What	is	the	CPU	time	for	 	stack
operations?	(Express	your	answer	in	terms	of	 	and	 	for	this	and	subsequent	parts.)

Worst-case	number	of	disk	accesses:	 	read	+	 	write.

CPU	time:	 	.

Now	consider	a	stack	implementation	in	which	we	keep	one	page	of	the	stack	in
memory.	(We	also	maintain	a	small	amount	of	memory	to	keep	track	of	which	page	is
currently	in	memory.)	We	can	perform	a	stack	operation	only	if	the	relevant	disk	page
resides	in	memory.	If	necessary,	we	can	write	the	page	currently	in	memory	to	the	disk
and	read	in	the	new	page	from	the	disk	to	memory.	If	the	relevant	disk	page	is	already
in	memory,	then	no	disk	accesses	are	required.

b.	What	is	the	worst-case	number	of	disk	accesses	required	for	 	PUSH	operations?
What	is	the	CPU	time?
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Worst-case	number	of	disk	accesses:	 	write.

CPU	time:	 	.

c.	What	is	the	worst-case	number	of	disk	accesses	required	for	 	stack	operations?
What	is	the	CPU	time?

Worst-case	number	of	disk	accesses:	 	read	+	 	write.

CPU	time:	 	.

Suppose	that	we	now	implement	the	stack	by	keeping	two	pages	in	memory	(in	addition
to	a	small	number	of	words	for	bookkeeping).

d.	Describe	how	to	manage	the	stack	pages	so	that	the	amortized	number	of	disk

accesses	for	any	stack	operation	is	 	and	the	amortized	CPU	time	for	any

stack	operation	is	 	.

Less	than	 	:	load	prev	page.

Larger	than	 	:	load	next	page.

18-2	Joining	and	splitting	2-3-4	trees
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The	join	operation	takes	two	dynamic	sets	 	and	 	and	an	element	 	such	that	for

any	 	and	 	,	we	have	 	.	It	returns	a

set	 	.	The	split	operation	is	like	an	"inverse"	join:	given	a
dynamic	set	 	and	an	element	 	,	it	creates	a	set	 	that	consists	of	all	elements

in	set	 	and	an	element	 	,	it	creates	a	set	 	that	consists	of	all	elements	in

	whose	keys	are	less	than	 	and	a	set	 	that	consists	of	all	elements

in	 	whose	keys	are	greater	than	 	.	In	this	problem,	we	investigate	how
to	implement	these	operations	on	2-3-4	trees.	We	assume	for	convenience	that
elements	consist	only	of	keys	and	that	all	key	values	are	distinct.

a.	Show	how	to	maintain,	for	every	node	 	of	a	2-3-4	tree,	the	height	of	the	subtree

rooted	at	 	as	an	attribute	 	.	Make	sure	that	your	implementation	does	not
affect	the	asymptotic	running	times	of	searching,	insertion,	and	deletion.

b.	Show	how	to	implement	the	join	operation.	Given	two	2-3-4	trees	 	and	 	and	a

key	 	,	the	join	operation	should	run	in	 	time,	where	 	and	 	are

the	heights	of	 	and	 	,	respectively.

c.	Consider	the	simple	path	 	from	the	root	of	a	2-3-4	tree	 	to	a	given	key	 	,	the	set

	of	keys	in	 	that	are	less	than	 	,	and	the	set	 	of	keys	in	 	that	are	greater	than

	.	Show	that	 	breaks	 	into	a	set	of	trees	 	and	a	set	of	keys

	,	where,	for	 	,	we	have	 	for	any

keys	 	and	 	.	What	is	the	relationship	between	the	heights	of	

and	 	?	Describe	how	 	breaks	 	into	sets	of	trees	and	keys.

d.	Show	how	to	implement	the	split	operation	on	 	.	Use	the	join	operation	to	assemble

the	keys	in	 	into	a	single	2-3-4	tree	 	and	the	keys	in	 	into	a	single	2-3-4	tree

	.	The	running	time	of	the	split	operation	should	be	 	,	where	 	is	then
umber	of	keys	in	 	.	(Hint:	The	costs	for	joining	should	telescope.)
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19.1	Structure	of	Fibonacci	heaps

19.1	Structure	of	Fibonacci	heaps

392



19.2	Mergeable-heap	operations

19.2-1

Show	the	Fibonacci	heap	that	results	from	calling	FIB-HEAP-EXTRACT-MIN	on	the
Fibonacci	heap	shown	in	Figure	19.4(m).

19.2	Mergeable-heap	operations
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19.3	Decreasing	a	key	and	deleting	a	node

19.3-1

Suppose	that	a	root	 	in	a	Fibonacci	heap	is	marked.	Explain	how	 	came	to	be	a
marked	root.	Argue	that	it	doesn't	matter	to	the	analysis	that	 	is	marked,	even	though
it	is	not	a	root	that	was	first	linked	to	another	node	and	then	lost	one	child.

19.3-2

Justify	the	 	amortized	time	of	FIB-HEAP-DECREASE-KEY	as	an	average	cost
per	operation	by	using	aggregate	analysis.
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19.4	Bounding	the	maximum	degree

19.4-1

Professor	Pinocchio	claims	that	the	height	of	an	 	-node	Fibonacci	heap	is	 	.
Show	that	the	professor	is	mistaken	by	exhibiting,	for	any	positive	integer	 	,	a
sequence	of	Fibonacci-heap	operations	that	creates	a	Fibonacci	heap	consisting	of	just
one	tree	that	is	a	linear	chain	of	 	nodes.

Initialize:	insert	3	numbers	then	extract-min.

Iteration:	insert	3	numbers,	in	which	at	least	two	numbers	are	less	than	the	root	of	chain,
then	extract-min.	The	smallest	newly	inserted	number	will	be	extracted	and	the	remaining
two	numbers	will	form	a	heap	whose	degree	of	root	is	1,	and	since	the	root	of	the	heap	is
less	than	the	old	chain,	the	chain	will	be	merged	into	the	newly	created	heap.	Finally	we
should	delete	the	node	which	contains	the	largest	number	of	the	3	inserted	numbers.

19.4-2

Suppose	we	generalize	the	cascading-cut	rule	to	cut	a	node	 	from	its	parent	as	soon
as	it	loses	its	 	th	child,	for	some	integer	constant	 	.	(The	rule	in	Section	19.3	uses

	.)	For	what	values	of	 	is	 	?
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Problems

19-1	Alternative	implementation	of	deletion

Professor	Pisano	has	proposed	the	following	variant	of	the	FIB-HEAP-DELETE
procedure,	claiming	that	it	runs	faster	when	the	node	being	deleted	is	not	the	node
pointed	to	by	 	.

PISANO-DELETE(H,	x)

1	if	x	==	H.min

2						FIB-HEAP-EXTRACT-MIN(H)

3	else	y	=	x.p

4						if	y	!=	NIL

5											CUT(H,	x,	y)

6											CASCADING-CUT(H,	y)

7						add	x's	child	list	to	the	root	list	of	H

8						remove	x	from	the	root	list	of	H

a.	The	professor’s	claim	that	this	procedure	runs	faster	is	based	partly	on	the

assumption	that	line	7	can	be	performed	in	 	actual	time.	What	is	wrong	with	this
assumption?

The	largest	degree	is	 	.

b.	Give	a	good	upper	bound	on	the	actual	time	of	PISANO-DELETE	when	 	is	not

	.	Your	bound	should	be	in	terms	of	 	and	the	number	 	of	calls	to
the	CASCADING-CUT	procedure.

	.

c.	Suppose	that	we	call	PISANO-DELETE	 	,	and	let	 	be	the	Fibonacci	heap

that	results.	Assuming	that	node	 	is	not	a	root,	bound	the	potential	of	 	in	terms	of

	,	 	,	 	,	and	 	.

	.

d.	Conclude	that	the	amortized	time	for	PISANO-DELETE	is	asymptotically	no	better

than	for	FIB-HEAP-DELETE,	evenwhen	 	.
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	is

worse	than	 	.

19-2	Binomial	trees	and	binomial	heaps

The	binomial	tree	 	is	an	ordered	tree	(see	Section	B.5.2)	defined	recursively.	As

shown	in	Figure	19.6(a),	the	binomial	tree	 	consists	of	a	single	node.	The	binomial

tree	 	consists	of	two	binomial	trees	 	that	are	linked	together	so	that	the	root	of
one	is	the	leftmost	child	of	the	root	of	the	other.	Figure	19.6(b)	shows	the	binomial	trees

	through	 	.

a.	Show	that	for	the	binomial	tree	 	,

1.	 there	are	 	nodes,
2.	 the	height	of	the	tree	is	 	,

3.	 there	are	exactly	 	nodes	at	depth	 	for	 	,	and
4.	 the	root	has	degree	 	,	which	is	greater	than	that	of	any	other	node;	moreover,	as

Figure	19.6(c)	shows,	if	we	number	the	children	of	the	root	from	left	to	right	by

	,	then	child	 	is	the	root	of	a	subtree	 	.

1.	 	consists	of	two	binomial	trees	 	.

2.	 The	height	of	one	 	is	increased	by	1.

3.	 For	 	,	 	and	only	root	is	at	depth	 	.	Suppose	in	 	,	the	number	of

nodes	at	depth	 	is	 	,	in	 	,	the	number	of	nodes	at	depth	 	is

	.
4.	 The	degree	of	the	root	increase	by	1.

A	binomial	heap	 	is	a	set	of	binomial	trees	that	satisfies	the	following	properties:

1.	 Each	node	has	a	key	(like	a	Fibonacci	heap).
2.	 Each	binomial	tree	in	 	obeys	the	min-heap	property.
3.	 For	any	nonnegative	integer	 	,	there	is	at	most	one	binomial	tree	in	 	whose	root

has	degree	 	.

b.	Suppose	that	a	binomial	heap	 	has	a	total	of	 	nodes.	Discuss	the	relationship
between	the	binomial	trees	that	 	contains	and	the	binary	representation	of	 	.

Conclude	that	 	consists	of	at	most	 	binomial	trees.
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The	same	as	the	binary	representation	of	 	.

Suppose	that	we	represent	a	binomial	heap	as	follows.	The	left-child,	right-sibling
scheme	of	Section	10.4	represents	each	binomial	tree	within	a	binomial	heap.	Each
node	contains	its	key;	pointers	to	its	parent,	to	its	leftmost	child,	and	to	the	sibling
immediately	to	its	right	(these	pointers	are	NIL	when	appropriate);	and	its	degree	(as	in
Fibonacci	heaps,	how	many	children	it	has).	The	roots	form	a	singly	linked	root	list,
ordered	by	the	degrees	of	the	roots	(from	low	to	high),	and	we	access	the	binomial
heap	by	a	pointer	to	the	first	node	on	the	root	list.

c.	Complete	the	description	of	how	to	represent	a	binomial	heap	(i.e.,	name	the
attributes,	describe	when	attributes	have	the	value	NIL,	and	define	how	the	root	list	is
organized),	and	show	how	to	implement	the	same	seven	operations	on	binomial	heaps
as	this	chapter	implemented	on	Fibonacci	heaps.	Each	operation	should	run	in

	worst-case	time,	where	 	is	the	number	of	nodes	in	the	binomial	heap	(or	in
the	case	of	the	UNION	operation,	in	the	two	binomial	heaps	that	are	being	united).	The
MAKE-HEAP	operation	should	take	constant	time.

d.	Suppose	that	we	were	to	implement	only	the	mergeable-heap	operations	on	a
Fibonacci	heap	(i.e.,	we	do	not	implement	the	DECREASE-KEY	or	DELETE
operations).	How	would	the	trees	in	a	Fibonacci	heap	resemble	those	in	a	binomial
heap?	How	would	they	differ?	Show	that	the	maximum	degree	in	an	 	-node	Fibonacci

heap	would	be	at	most	 	.

e.	Professor	McGee	has	devised	a	new	data	structure	based	on	Fibonacci	heaps.	A
McGee	heap	has	the	same	structure	as	a	Fibonacci	heap	and	supports	just	the
mergeable-heap	operations.	The	implementations	of	the	operations	are	the	same	as	for
Fibonacci	heaps,	except	that	insertion	and	union	consolidate	the	root	list	as	their	last
step.	What	are	the	worst-case	running	times	of	operations	on	McGee	heaps?

19-3	More	Fibonacci-heap	operations
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We	wish	to	augment	a	Fibonacci	heap	 	to	support	two	new	operations	without
changing	the	amortized	running	time	of	any	other	Fibonacci-heap	operations.

a.	The	operation	FIB-HEAP-CHANGE-KEY	 	changes	the	key	of	node	 	to
the	value	 	.	Give	an	efficient	implementation	of	FIB-HEAP-CHANGE-KEY,	and	analyze
the	amortized	running	time	of	your	implementation	for	the	cases	in	which	 	is	greater

than,	less	than,	or	equal	to	 	.

b.	Give	an	efficient	implementation	of	FIB-HEAP-PRUNE	 	,	which	deletes

	nodes	from	 	.	You	may	choose	any	 	nodes	to	delete.	Analyze
the	amortized	running	time	of	your	implementation.	(Hint:	You	may	need	to	modify	the
data	structure	and	potential	function.)

19-4	2-3-4	heaps

Chapter	18	introduced	the	2-3-4	tree,	in	which	every	internal	node	(other	than	possibly
the	root)	has	two,	three,	or	four	children	and	all	leaves	have	the	same	depth.	In	this
problem,	we	shall	implement	2-3-4	heaps,	which	support	the	mergeable-heap
operations.

The	2-3-4	heaps	differ	from	2-3-4	trees	in	the	following	ways.	In	2-3-4	heaps,	only

leaves	store	keys,	and	each	leaf	 	stores	exactly	one	key	in	the	attribute	 	.	The
keys	in	the	leaves	may	appear	in	any	order.	Each	internal	node	 	contains	a	value

	that	is	equal	to	the	smallest	key	stored	in	any	leaf	in	the	subtree	rooted	at	 	.

The	root	 	contains	an	attribute	 	that	gives	the	height	of	the	tree.	Finally,	2-3-
4	heaps	are	designed	to	be	kept	in	main	memory,	so	that	disk	reads	and	writes	are	not
needed.

Implement	the	following	2-3-4	heap	operations.	In	parts	(a)–(e),	each	operation	should

run	in	 	time	on	a	2-3-4	heap	with	 	elements.	The	UNION	operation	in	part	(f)

should	run	in	 	time,	where	 	is	the	number	of	elements	in	the	two	input	heaps.

a.	MINIMUM,	which	returns	a	pointer	to	the	leaf	with	the	smallest	key.

Choose	the	smallest	child	in	each	layer.

b.	DECREASE-KEY,	which	decreases	the	key	of	a	given	leaf	 	to	a	given	value

	.

Decrease	the	key	and	update	 	upwards	to	the	root.

c.	INSERT,	which	inserts	leaf	 	with	key	 	.
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Insert	just	like	the	insertion	in	B-trees	and	update	 	is	the	inserted	key	is	less	than
	.

d.	DELETE,	which	deletes	a	given	leaf	 	.

Delete	the	key	and	recalculate	 	upwards.	Since	an	internal	node	has	at	most	4

children,	which	is	a	constant,	it	still	runs	in	 	.

e.	EXTRACT-MIN,	which	extracts	the	leaf	with	the	smallest	key.

MINIMUM	and	DELETE.

f.	UNION,	which	unites	two	2-3-4	heaps,	returning	a	single	2-3-4	heap	and	destroying
the	input	heaps.

Based	on	problem	18-2.
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20.1	Preliminary	approaches

20.1-1

Modify	the	data	structures	in	this	section	to	support	duplicate	keys.

Bit	vector	=>	integer	vector.

20.1-2

Modify	the	data	structures	in	this	section	to	support	keys	that	have	associated	satellite
data.

Satellite	area.

20.1-3

Observe	that,	using	the	structures	in	this	section,	the	way	we	find	the	successor	and
predecessor	of	a	value	 	does	not	depend	on	whether	 	is	in	the	set	at	the	time.	Show
how	to	find	the	successor	of	 	in	a	binary	search	tree	when	 	is	not	stored	in	the	tree.

For	each	node,	if	 	,	then	 	is	a	candidate	and	descend	to	the
node's	left	child;	otherwise	do	nothing	and	descend	to	the	node's	right	child.	There	are	at

most	 	candidates,	the	successor	is	the	minimal	candidate,	and	the	method	runs	in

	.

20.1-4

Suppose	that	instead	of	superimposing	a	tree	of	degree	 	,	we	were	to	superimpose

a	tree	of	degree	 	,	where	 	is	a	constant.	What	would	be	the	height	of	such	a
tree,	and	how	long	would	each	of	the	operations	take?

Height:	

How	long:	
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20.2	A	recursive	structure

20.2-1

Write	pseudocode	for	the	procedures	PROTO-VEB-MAXIMUM	and	PROTO-
VEBPREDECESSOR.

import	math

class	ProtoVEB:

				def	__init__(self,	u):

								self.u	=	u

								self.sqrt	=	int(math.sqrt(u))

								if	self.is_leaf():

												self.a	=	[0,	0]

								else:

												self.summary	=	ProtoVEB(self.sqrt)

												self.cluster	=	[]

												for	_	in	xrange(self.sqrt):

																self.cluster.append(ProtoVEB(self.sqrt))

				def	is_leaf(self):

								return	self.u	==	2

				def	high(self,	x):

								return	x	/	self.sqrt

				def	low(self,	x):

								return	x	%	self.sqrt

				def	index(self,	x,	y):

								return	x	*	self.sqrt	+	y

				def	member(self,	x):

								if	self.is_leaf():

												return	self.a[x]

								return	self.cluster[self.high(x)].member(self.low(x))

				def	minimum(self):

								if	self.is_leaf():

												if	self.a[0]	>	0:

																return	0

												if	self.a[1]	>	0:

																return	1

												return	None

								min_idx	=	self.summary.minimum()

								if	min_idx	is	None:
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												return	None

								offset	=	self.cluster[min_idx].minimum()

								return	self.index(min_idx,	offset)

				def	maximum(self):

								if	self.is_leaf():

												if	self.a[1]	>	0:

																return	1

												if	self.a[0]	>	0:

																return	0

												return	None

								max_idx	=	self.summary.maximum()

								if	max_idx	is	None:

												return	None

								offset	=	self.cluster[max_idx].maximum()

								return	self.index(max_idx,	offset)

				def	predecessor(self,	x):

								if	self.is_leaf():

												if	self.a[0]	==	1	and	x	==	1:

																return	0

												return	None

								offset	=	self.cluster[self.high(x)].predecessor(self.low(x))

								if	offset	is	not	None:

												return	self.index(self.high(x),	offset)

								pred_idx	=	self.summary.predecessor(self.high(x))

								if	pred_idx	is	None:

												return	None

								offset	=	self.cluster[pred_idx].maximum()

								return	self.index(pred_idx,	offset)

				def	successor(self,	x):

								if	self.is_leaf():

												if	x	==	0	and	self.a[1]	==	1:

																return	1

												return	None

								offset	=	self.cluster[self.high(x)].successor(self.low(x))

								if	offset	is	not	None:

												return	self.index(self.high(x),	offset)

								succ_idx	=	self.summary.successor(self.high(x))

								if	succ_idx	is	None:

												return	None

								offset	=	self.cluster[succ_idx].minimum()

								return	self.index(succ_idx,	offset)

				def	insert(self,	x):

								if	self.is_leaf():

												self.a[x]	=	1

								else:

												self.summary.insert(self.high(x))

												self.cluster[self.high(x)].insert(self.low(x))

				def	display(self,	space=0,	summary=False):
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								if	self.is_leaf():

												if	summary:

																print('	'	*	space	+	'S	'	+	str(self.u)	+	'	'	+	str(self.a))

												else:

																print('	'	*	space	+	'C	'	+	str(self.u)	+	'	'	+	str(self.a))

								else:

												if	summary:

																print('	'	*	space	+	'S	'	+	str(self.u))

												else:

																print('	'	*	space	+	'C	'	+	str(self.u))

												self.summary.display(space	+	2,	True)

												for	c	in	self.cluster:

																c.display(space	+	2)

20.2-2

Write	pseudocode	for	PROTO-VEB-DELETE.	It	should	update	the	appropriate
summary	bit	by	scanning	the	related	bits	within	the	cluster.	What	is	the	worst-case
running	time	of	your	procedure?

				def	delete(self,	x):

								if	self.is_leaf():

												self.a[x]	=	0

								else:

												self.cluster[self.high(x)].delete(self.low(x))

												if	self.cluster[self.high(x)].minimum()	is	None:

																self.summary.delete(self.high(x))

20.2-3

Add	the	attribute	 	to	each	proto-vEB	structure,	giving	the	number	of	elements
currently	in	the	set	it	represents,	and	write	pseudocode	for	PROTO-VEB-DELETE	that
uses	the	attribute	 	to	decide	when	to	reset	summary	bits	to	0.	What	is	the	worst-case
running	time	of	your	procedure?	What	other	procedures	need	to	change	because	of	the
new	attribute?	Do	these	changes	affect	their	running	times?
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				def	insert(self,	x):

								if	self.is_leaf():

												if	self.a[x]	==	0:

																self.a[x]	=	1

																self.n	+=	1

																return	True

												return	False

								new_elem	=	self.cluster[self.high(x)].insert(self.low(x))

								if	new_elem:

												self.n	+=	1

								self.summary.insert(self.high(x))

								return	new_elem

				def	delete(self,	x):

								if	self.is_leaf():

												if	self.a[x]	==	1:

																self.a[x]	=	0

																self.n	-=	1

																return	True

												return	False

								del_elem	=	self.cluster[self.high(x)].delete(self.low(x))

								if	del_elem:

												self.n	-=	1

								if	self.cluster[self.high(x)].n	==	0:

												self.summary.delete(self.high(x))

								return	del_elem

Worst-case:	

20.2-4

Modify	the	proto-vEB	structure	to	support	duplicate	keys.

class	ProtoVEB:

				def	__init__(self,	u):

								self.u	=	u

								self.n	=	0

								self.sqrt	=	int(math.sqrt(u))

								if	self.is_leaf():

												self.a	=	[0,	0]

								else:

												self.summary	=	ProtoVEB(self.sqrt)

												self.cluster	=	[]

												for	_	in	xrange(self.sqrt):

																self.cluster.append(ProtoVEB(self.sqrt))

				def	is_leaf(self):

								return	self.u	==	2
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				def	high(self,	x):

								return	x	/	self.sqrt

				def	low(self,	x):

								return	x	%	self.sqrt

				def	index(self,	x,	y):

								return	x	*	self.sqrt	+	y

				def	member(self,	x):

								if	self.is_leaf():

												return	self.a[x]

								return	self.cluster[self.high(x)].member(self.low(x))

				def	minimum(self):

								if	self.is_leaf():

												if	self.a[0]	>	0:

																return	0

												if	self.a[1]	>	0:

																return	1

												return	None

								min_idx	=	self.summary.minimum()

								if	min_idx	is	None:

												return	None

								offset	=	self.cluster[min_idx].minimum()

								return	self.index(min_idx,	offset)

				def	maximum(self):

								if	self.is_leaf():

												if	self.a[1]	>	0:

																return	1

												if	self.a[0]	>	0:

																return	0

												return	None

								max_idx	=	self.summary.maximum()

								if	max_idx	is	None:

												return	None

								offset	=	self.cluster[max_idx].maximum()

								return	self.index(max_idx,	offset)

				def	predecessor(self,	x):

								if	self.is_leaf():

												if	self.a[0]	>	0	and	x	==	1:

																return	0

												return	None

								offset	=	self.cluster[self.high(x)].predecessor(self.low(x))

								if	offset	is	not	None:

												return	self.index(self.high(x),	offset)

								pred_idx	=	self.summary.predecessor(self.high(x))

								if	pred_idx	is	None:

												return	None

								offset	=	self.cluster[pred_idx].maximum()

								return	self.index(pred_idx,	offset)
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				def	successor(self,	x):

								if	self.is_leaf():

												if	x	==	0	and	self.a[1]	>	0:

																return	1

												return	None

								offset	=	self.cluster[self.high(x)].successor(self.low(x))

								if	offset	is	not	None:

												return	self.index(self.high(x),	offset)

								succ_idx	=	self.summary.successor(self.high(x))

								if	succ_idx	is	None:

												return	None

								offset	=	self.cluster[succ_idx].minimum()

								return	self.index(succ_idx,	offset)

				def	insert(self,	x):

								self.n	+=	1

								if	self.is_leaf():

												self.a[x]	+=	1

								else:

												self.cluster[self.high(x)].insert(self.low(x))

												self.summary.insert(self.high(x))

				def	delete(self,	x):

								if	self.is_leaf():

												if	self.a[x]	>	0:

																self.a[x]	-=	1

																self.n	-=	1

																return	True

												return	False

								del_elem	=	self.cluster[self.high(x)].delete(self.low(x))

								if	del_elem:

												self.n	-=	1

												self.summary.delete(self.high(x))

								return	del_elem

20.2-5

Modify	the	proto-vEB	structure	to	support	keys	that	have	associated	satellite	data.

class	ProtoVEB:

				def	__init__(self,	u):

								self.u	=	u

								self.n	=	0

								self.sqrt	=	int(math.sqrt(u))

								if	self.is_leaf():

												self.a	=	[0,	0]

												self.data	=	[None,	None]

								else:

												self.summary	=	ProtoVEB(self.sqrt)

												self.cluster	=	[]
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												for	_	in	xrange(self.sqrt):

																self.cluster.append(ProtoVEB(self.sqrt))

				def	is_leaf(self):

								return	self.u	==	2

				def	high(self,	x):

								return	x	/	self.sqrt

				def	low(self,	x):

								return	x	%	self.sqrt

				def	index(self,	x,	y):

								return	x	*	self.sqrt	+	y

				def	member(self,	x):

								if	self.is_leaf():

												return	self.a[x]

								return	self.cluster[self.high(x)].member(self.low(x))

				def	get_data(self,	x):

								if	self.is_leaf():

												return	self.data[x]

								return	self.cluster[self.high(x)].get_data(self.low(x))

				def	minimum(self):

								if	self.is_leaf():

												if	self.a[0]	==	1:

																return	0

												if	self.a[1]	==	1:

																return	1

												return	None

								min_idx	=	self.summary.minimum()

								if	min_idx	is	None:

												return	None

								offset	=	self.cluster[min_idx].minimum()

								return	self.index(min_idx,	offset)

				def	maximum(self):

								if	self.is_leaf():

												if	self.a[1]	==	1:

																return	1

												if	self.a[0]	==	1:

																return	0

												return	None

								max_idx	=	self.summary.maximum()

								if	max_idx	is	None:

												return	None

								offset	=	self.cluster[max_idx].maximum()

								return	self.index(max_idx,	offset)

				def	predecessor(self,	x):

								if	self.is_leaf():
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												if	self.a[0]	==	1	and	x	==	1:

																return	0

												return	None

								offset	=	self.cluster[self.high(x)].predecessor(self.low(x))

								if	offset	is	not	None:

												return	self.index(self.high(x),	offset)

								pred_idx	=	self.summary.predecessor(self.high(x))

								if	pred_idx	is	None:

												return	None

								offset	=	self.cluster[pred_idx].maximum()

								return	self.index(pred_idx,	offset)

				def	successor(self,	x):

								if	self.is_leaf():

												if	x	==	0	and	self.a[1]	==	1:

																return	1

												return	None

								offset	=	self.cluster[self.high(x)].successor(self.low(x))

								if	offset	is	not	None:

												return	self.index(self.high(x),	offset)

								succ_idx	=	self.summary.successor(self.high(x))

								if	succ_idx	is	None:

												return	None

								offset	=	self.cluster[succ_idx].minimum()

								return	self.index(succ_idx,	offset)

				def	insert(self,	x,	data):

								if	self.is_leaf():

												if	self.a[x]	==	0:

																self.a[x]	=	1

																self.data[x]	=	data

																self.n	+=	1

																return	True

												return	False

								new_elem	=	self.cluster[self.high(x)].insert(self.low(x),	data)

								if	new_elem:

												self.n	+=	1

								self.summary.insert(self.high(x),	None)

								return	new_elem

				def	delete(self,	x):

								if	self.is_leaf():

												if	self.a[x]	==	1:

																self.a[x]	=	0

																self.data[x]	=	None

																self.n	-=	1

																return	True

												return	False

								del_elem	=	self.cluster[self.high(x)].delete(self.low(x))

								if	del_elem:

												self.n	-=	1

								if	self.cluster[self.high(x)].n	==	0:

												self.summary.delete(self.high(x))
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								return	del_elem

20.2-6

Write	pseudocode	for	a	procedure	that	creates	a	proto-vEB	 	structure.

See	exercise	20.2-1.

20.2-7

Argue	that	if	line	9	of	PROTO-VEB-MINIMUM	is	executed,	then	the	proto-vEB	structure
is	empty.

Obviously.

20.2-8

Suppose	that	we	designed	a	proto-vEB	structure	in	which	each	cluster	array	had	only

	elements.	What	would	the	running	times	of	each	operation	be?

There	are	 	clusters	in	each	proto-vEB.

MEMBER/INSRT:	 	.

MINIMUM/MAXIMUM:	 	.

SUCCESSOR/PREDECESSOR/DELETE:

	.
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20.3	The	van	Emde	Boas	tree

20.3-1

Modify	vEB	trees	to	support	duplicate	keys.

class	VanEmdeBoasTree:

				def	__init__(self,	u):

								self.u	=	u

								temp	=	u

								bit_num	=	-1

								while	temp	>	0:

												temp	>>=	1

												bit_num	+=	1

								self.sqrt_h	=	1	<<	((bit_num	+	1)	//	2)

								self.sqrt_l	=	1	<<	(bit_num	//	2)

								self.min	=	None

								self.max	=	None

								self.min_cnt	=	0

								self.max_cnt	=	0

								if	not	self.is_leaf():

												self.summary	=	VanEmdeBoasTree(self.sqrt_h)

												self.cluster	=	[]

												for	_	in	xrange(self.sqrt_h):

																self.cluster.append(VanEmdeBoasTree(self.sqrt_l))

				def	is_leaf(self):

								return	self.u	==	2

				def	high(self,	x):

								return	x	/	self.sqrt_l

				def	low(self,	x):

								return	x	%	self.sqrt_l

				def	index(self,	x,	y):

								return	x	*	self.sqrt_l	+	y

				def	minimum(self):

								return	self.min

				def	maximum(self):

								return	self.max

				def	member(self,	x):

								if	x	==	self.min	or	x	==	self.max:

												return	True

								if	self.is_leaf():

												return	False
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								return	self.member(self.cluster[self.high(x)],	self.low(x))

				def	successor(self,	x):

								if	self.is_leaf():

												if	x	==	0	and	self.max	==	1:

																return	1

												return	None

								if	self.min	is	not	None	and	x	<	self.min:

												return	self.min

								max_low	=	self.cluster[self.high(x)].maximum()

								if	max_low	is	not	None	and	self.low(x)	<	max_low:

												offset	=	self.cluster[self.high(x)].successor(self.low(x))

												return	self.index(self.high(x),	offset)

								succ_cluster	=	self.summary.successor(self.high(x))

								if	succ_cluster	is	None:

												return	None

								offset	=	self.cluster[succ_cluster].minimum()

								return	self.index(succ_cluster,	offset)

				def	predecessor(self,	x):

								if	self.is_leaf():

												if	x	==	1	and	self.min	==	0:

																return	0

												return	None

								if	self.max	is	not	None	and	x	>	self.max:

												return	self.max

								min_low	=	self.cluster[self.high(x)].minimum()

								if	min_low	is	not	None	and	self.low(x)	>	min_low:

												offset	=	self.cluster[self.high(x)].predecessor(self.low(x))

												return	self.index(self.high(x),	offset)

								pred_cluster	=	self.summary.predecessor(self.high(x))

								if	pred_cluster	is	None:

												if	self.min	is	not	None	and	x	>	self.min:

																return	self.min

												return	None

								offset	=	self.cluster[pred_cluster].maximum()

								return	self.index(pred_cluster,	offset)

				def	insert_empty(self,	x,	n):

								self.min	=	x

								self.max	=	x

								self.min_cnt	=	self.max_cnt	=	n

				def	insert(self,	x,	n=1):

								if	self.min	is	None:

												self.insert_empty(x,	n)

												return

								if	x	==	self.max:

												self.max_cnt	+=	n

								if	x	==	self.min:

												self.min_cnt	+=	n

												return

								if	x	<	self.min:
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												x,	self.min	=	self.min,	x

												n,	self.min_cnt	=	self.min_cnt,	n

								if	not	self.is_leaf():

												if	self.cluster[self.high(x)].minimum()	is	None:

																self.summary.insert(self.high(x))

																self.cluster[self.high(x)].insert_empty(self.low(x),	n)

												else:

																self.cluster[self.high(x)].insert(self.low(x),	n)

								if	x	>	self.max:

												self.max	=	x

												self.max_cnt	=	n

				def	delete(self,	x,	n=1):

								if	self.min	==	self.max:

												if	self.min	is	None	or	self.min_cnt	==	n:

																self.min	=	self.max	=	None

																self.min_cnt	=	0

												else:

																self.min_cnt	-=	n

												self.max_cnt	=	self.min_cnt

												return

								if	self.is_leaf():

												if	x	==	0:

																self.min_cnt	-=	n

																if	self.min_cnt	==	0:

																				self.min	=	1

																				self.min_cnt	=	self.max_cnt

												else:

																self.max_cnt	-=	n

																if	self.max_cnt	==	0:

																				self.max	=	0

																				self.max_cnt	=	self.min_cnt

												return

								next_n	=	n

								if	x	==	self.min:

												if	self.min_cnt	>	n:

																self.min_cnt	-=	n

																return

												first_cluster	=	self.summary.minimum()

												x	=	self.index(first_cluster,

																											self.cluster[first_cluster].minimum())

												self.min	=	x

												self.min_cnt	=	self.cluster[first_cluster].min_cnt

												next_n	=	self.cluster[first_cluster].min_cnt

								self.cluster[self.high(x)].delete(self.low(x),	next_n)

								if	self.cluster[self.high(x)].minimum()	is	None:

												self.summary.delete(self.high(x))

												if	x	==	self.max:

																if	self.max	==	self.min:

																				self.max_cnt	=	self.min_cnt

																				return

																self.max_cnt	-=	n

																if	self.max_cnt	==	0:
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																				sum_max	=	self.summary.maximum()

																				if	sum_max	is	None:

																								self.max	=	self.min

																								self.max_cnt	=	self.min_cnt

																				else:

																								self.max	=	self.index(sum_max,

																																														self.cluster[sum_max].maximum())

																								self.max_cnt	=	self.cluster[sum_max].max_cnt

								elif	x	==	self.max:

												if	self.max	==	self.min:

																self.max_cnt	=	self.min_cnt

																return

												self.max_cnt	-=	n

												if	self.max_cnt	==	0:

																self.max	=	self.index(self.high(x),

																																						self.cluster[self.high(x)].maximum())

																self.max_cnt	=	self.cluster[self.high(x)].max_cnt

				def	display(self,	space=0,	summary=False):

								disp	=	'	'	*	space

								if	summary:

												disp	+=	'S	'

								else:

												disp	+=	'C	'

								disp	+=	str(self.u)	+	'	'	+	str(self.min)	+	'	'	+	str(self.max)	+	'	|	'

								disp	+=	str(self.min_cnt)	+	'	'	+	str(self.max_cnt)

								print(disp)

								if	not	self.is_leaf():

												self.summary.display(space	+	2,	True)

												for	c	in	self.cluster:

																c.display(space	+	2)

20.3-2

Modify	vEB	trees	to	support	keys	that	have	associated	satellite	data.

class	VanEmdeBoasTree:

				def	__init__(self,	u):

								self.u	=	u

								temp	=	u

								bit_num	=	-1

								while	temp	>	0:

												temp	>>=	1

												bit_num	+=	1

								self.sqrt_h	=	1	<<	((bit_num	+	1)	//	2)

								self.sqrt_l	=	1	<<	(bit_num	//	2)

								self.min	=	None

								self.max	=	None

								self.min_data	=	None

								self.max_data	=	None

								if	not	self.is_leaf():
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												self.summary	=	VanEmdeBoasTree(self.sqrt_h)

												self.cluster	=	[]

												for	_	in	xrange(self.sqrt_h):

																self.cluster.append(VanEmdeBoasTree(self.sqrt_l))

				def	is_leaf(self):

								return	self.u	==	2

				def	high(self,	x):

								return	x	/	self.sqrt_l

				def	low(self,	x):

								return	x	%	self.sqrt_l

				def	index(self,	x,	y):

								return	x	*	self.sqrt_l	+	y

				def	minimum(self):

								return	self.min

				def	maximum(self):

								return	self.max

				def	member(self,	x):

								if	x	==	self.min	or	x	==	self.max:

												return	True

								if	self.is_leaf():

												return	False

								return	self.member(self.cluster[self.high(x)],	self.low(x))

				def	get_data(self,	x):

								if	x	==	self.min:

												return	self.min_data

								if	x	==	self.max:

												return	self.max_data

								if	self.is_leaf():

												return	None

								return	self.cluster[self.high(x)].get_data(self.low(x))

				def	successor(self,	x):

								if	self.is_leaf():

												if	x	==	0	and	self.max	==	1:

																return	1

												return	None

								if	self.min	is	not	None	and	x	<	self.min:

												return	self.min

								max_low	=	self.cluster[self.high(x)].maximum()

								if	max_low	is	not	None	and	self.low(x)	<	max_low:

												offset	=	self.cluster[self.high(x)].successor(self.low(x))

												return	self.index(self.high(x),	offset)

								succ_cluster	=	self.summary.successor(self.high(x))

								if	succ_cluster	is	None:

												return	None
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								offset	=	self.cluster[succ_cluster].minimum()

								return	self.index(succ_cluster,	offset)

				def	predecessor(self,	x):

								if	self.is_leaf():

												if	x	==	1	and	self.min	==	0:

																return	0

												return	None

								if	self.max	is	not	None	and	x	>	self.max:

												return	self.max

								min_low	=	self.cluster[self.high(x)].minimum()

								if	min_low	is	not	None	and	self.low(x)	>	min_low:

												offset	=	self.cluster[self.high(x)].predecessor(self.low(x))

												return	self.index(self.high(x),	offset)

								pred_cluster	=	self.summary.predecessor(self.high(x))

								if	pred_cluster	is	None:

												if	self.min	is	not	None	and	x	>	self.min:

																return	self.min

												return	None

								offset	=	self.cluster[pred_cluster].maximum()

								return	self.index(pred_cluster,	offset)

				def	insert_empty(self,	x,	data):

								self.min	=	x

								self.max	=	x

								self.min_data	=	self.max_data	=	data

				def	insert(self,	x,	data):

								if	self.min	is	None:

												self.insert_empty(x,	data)

								else:

												if	x	<	self.min:

																x,	self.min	=	self.min,	x

																data,	self.min_data	=	self.min_data,	data

												if	not	self.is_leaf():

																if	self.cluster[self.high(x)].minimum()	is	None:

																				self.summary.insert(self.high(x),	data)

																				self.cluster[self.high(x)].insert_empty(self.low(x),	data)

																else:

																				self.cluster[self.high(x)].insert(self.low(x),	data)

												if	x	>	self.max:

																self.max	=	x

																self.max_data	=	data

				def	delete(self,	x):

								if	self.min	==	self.max:

												self.min	=	self.max	=	None

												self.min_data	=	self.max_data	=	None

								elif	self.is_leaf():

												if	x	==	0:

																self.min	=	1

																self.min_data	=	self.max_data

												else:
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																self.min	=	0

												self.max	=	self.min

												self.max_data	=	self.min_data

								else:

												if	x	==	self.min:

																first_cluster	=	self.summary.minimum()

																x	=	self.index(first_cluster,

																															self.cluster[first_cluster].minimum())

																self.min	=	x

																self.min_data	=	self.cluster[first_cluster].min_data

												self.cluster[self.high(x)].delete(self.low(x))

												if	self.cluster[self.high(x)].minimum()	is	None:

																self.summary.delete(self.high(x))

																if	x	==	self.max:

																				sum_max	=	self.summary.maximum()

																				if	sum_max	is	None:

																								self.max	=	self.min

																								self.max_data	=	self.min_data

																				else:

																								self.max	=	self.index(sum_max,

																																														self.cluster[sum_max].maximum())

																								self.max_data	=	self.cluster[sum_max].max_data

												elif	x	==	self.max:

																self.max	=	self.index(self.high(x),

																																						self.cluster[self.high(x)].maximum())

																self.max_data	=	self.cluster[self.high(x)].max_data

				def	display(self,	space=0,	summary=False):

								disp	=	'	'	*	space

								if	summary:

												disp	+=	'S	'

								else:

												disp	+=	'C	'

								disp	+=	str(self.u)	+	'	'	+	str(self.min)	+	'	'	+	str(self.max)

								print(disp)

								if	not	self.is_leaf():

												self.summary.display(space	+	2,	True)

												for	c	in	self.cluster:

																c.display(space	+	2)

20.3-3

Write	pseudocode	for	a	procedure	that	creates	an	empty	van	Emde	Boas	tree.

See	exercise	20.3-1	and	exercise	20.3-2.

20.3-4
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What	happens	if	you	call	VEB-TREE-INSERT	with	an	element	that	is	already	in	the	vEB
tree?	What	happens	if	you	call	VEB-TREE-DELETE	with	an	element	that	is	not	in	the
vEB	tree?	Explain	why	the	procedures	exhibit	the	behavior	that	they	do.	Show	how	to
modify	vEB	trees	and	their	operations	so	that	we	can	check	in	constant	time	whether	an
element	is	present.

Already/not:	nothing	changes.

Constant	time:	add	an	auxiliary	array	of	size	 	.

20.3-5

Suppose	that	instead	of	 	clusters,	each	with	universe	size	 	,	we	constructed

vEB	trees	to	have	 	clusters,	each	with	universe	size	 	,	where	 	is	a
constant.	If	we	were	to	modify	the	operations	appropriately,	what	would	be	their	running

times?	For	the	purpose	of	analysis,	assume	that	 	and	 	are	always	integers.

MINIMUM/MAXIMUM:	 	.

SUCCESSOR/PREDECESSOR/INSERT/DELETE	worst:

	.

20.3-6

Creating	a	vEB	tree	with	universe	size	 	requires	 	time.	Suppose	we	wish	to
explicitly	account	for	that	time.	What	is	the	smallest	number	of	operations	 	for	which

the	amortized	time	of	each	operation	in	a	vEB	tree	is	 	?

Since	MINIMUM/MAXIMUM	is	 	,	we	need	about	 	operations.
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Problems

20-1	Space	requirements	for	van	Emde	Boas	trees

This	problem	explores	the	space	requirements	for	van	Emde	Boas	trees	and	suggests
a	way	to	modify	the	data	structure	to	make	its	space	requirement	depend	on	the
number	 	of	elements	actually	stored	in	the	tree,	rather	than	on	the	universe	size	 	.

For	simplicity,	assume	that	 	is	always	an	integer.

a.	Explain	why	the	following	recurrence	characterizes	the	space	requirement	 	of	a
van	Emde	Boas	tree	with	universe	size	u:

	:	number	of	clusters.

	:	number	of	summary.

	:	space	of	cluster/summary.

	:	pointers	of	clusters.

b.	Prove	that	recurrence	(20.5)	has	the	solution	 	.

Suppose	 	,
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In	order	to	reduce	the	space	requirements,	let	us	define	a	reduced-space	van	Emde
Boas	tree,	or	RS-vEB	tree,	as	a	vEB	tree	 	but	with	the	following	changes:

The	attribute	 	,	rather	than	being	stored	as	a	simple	array	of	pointers

to	vEB	trees	with	universe	size	 	,	is	a	hash	table	(see	Chapter	11)	stored	as	a
dynamic	table	(see	Section	17.4).	Corresponding	to	the	array	version	of

	,	the	hash	table	stores	pointers	to	RS-vEB	trees	with	universe	size

	.	To	find	the	 	th	cluster,	we	look	up	the	key	 	in	the	hash	table,	so	that	we	can
find	the	 	th	cluster	by	a	single	search	in	the	hash	table.

The	hash	table	stores	only	pointers	to	nonempty	clusters.	A	search	in	the	hash
table	for	an	empty	cluster	returns	NIL,	indicating	that	the	cluster	is	empty.

The	attribute	 	is	NIL	if	all	clusters	are	empty.	Otherwise,

	points	to	an	RS-vEB	tree	with	universe	size	 	.

Because	the	hash	table	is	implemented	with	a	dynamic	table,	the	space	it	requires	is
proportional	to	the	number	of	nonempty	clusters.

When	we	need	to	insert	an	element	into	an	empty	RS-vEB	tree,	we	create	the	RS-vEB
tree	by	calling	the	following	procedure,	where	the	parameter	u	is	the	universe	size	of
the	RS-vEB	tree:

CREATE-NEW-RS-VEB-TREE(u)

1		allocate	a	new	vEB	tree	V

2		V.u	=	u

3		V.min	=	NIL

4		V.max	=	NIL

5		V.summary	=	NIL

6		create	V.cluster	as	an	empty	dynamic	hash	table

7		return	V

c.	Modify	the	VEB-TREE-INSERT	procedure	to	produce	pseudocode	for	the	procedure

RS-VEB-TREE-INSERT	 	,	which	inserts	 	into	the	RS-vEB	tree	 	,	calling
CREATE-NEW-RS-VEB-TREE	as	appropriate.
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				def	get_cluster(self,	x):

								if	self.cluster[x]	is	None:

												self.cluster[x]	=	VanEmdeBoasTree(self.sqrt_l)

								return	self.cluster[x]

				def	get_summary(self):

								if	self.summary	is	None:

												self.summary	=	VanEmdeBoasTree(self.sqrt_h)

								return	self.summary

				def	insert(self,	x):

								if	self.min	is	None:

												self.insert_empty(x)

								else:

												if	x	<	self.min:

																x,	self.min	=	self.min,	x

												if	not	self.is_leaf():

																if	self.get_cluster(self.high(x)).minimum()	is	None:

																				self.get_summary().insert(self.high(x))

																				self.get_cluster(self.high(x)).insert_empty(self.low(x))

																else:

																				self.get_cluster(self.high(x)).insert(self.low(x))

												if	x	>	self.max:

																self.max	=	x

d.	Modify	the	VEB-TREE-SUCCESSOR	procedure	to	produce	pseudocode	for	the

procedure	RS-VEB-TREE-SUCCESSOR	 	,	which	returns	the	successor	of	 	in
RS-vEB	tree	 	,	or	NIL	if	 	has	no	successor	in	 	.

				def	successor(self,	x):

								if	self.is_leaf():

												if	x	==	0	and	self.max	==	1:

																return	1

												return	None

								if	self.min	is	not	None	and	x	<	self.min:

												return	self.min

								max_low	=	self.get_cluster(self.high(x)).maximum()

								if	max_low	is	not	None	and	self.low(x)	<	max_low:

												offset	=	self.get_cluster(self.high(x)).successor(self.low(x))

												return	self.index(self.high(x),	offset)

								succ_cluster	=	self.get_summary().successor(self.high(x))

								if	succ_cluster	is	None:

												return	None

								offset	=	self.cluster[succ_cluster].minimum()

								return	self.index(succ_cluster,	offset)
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e.	Prove	that,	under	the	assumption	of	simple	uniform	hashing,	your	RS-VEBTREE-

INSERT	and	RS-VEB-TREE-SUCCESSOR	procedures	run	in	 	expected
time.

The	hashing	tasks	about	 	time,	thus	the	procedures	run	in	 	.

f.	Assuming	that	elements	are	never	deleted	from	a	vEB	tree,	prove	that	the	space

requirement	for	the	RS-vEB	tree	structure	is	 	,	where	 	is	the	number	of
elements	actually	stored	in	the	RS-vEB	tree.

g.	RS-vEB	trees	have	another	advantage	over	vEB	trees:	they	require	less	time	to
create.	How	long	does	it	take	to	create	an	empty	RS-vEB	tree?

	to	create	the	hash	table.

20-2	y-fast	tries

This	problem	investigates	D.	Willard's	"y-fast	tries"	which,	like	van	Emde	Boas	trees,
perform	each	of	the	operations	MEMBER,	MINIMUM,	MAXIMUM,	PREDECESSOR,

and	SUCCESSOR	on	elements	drawn	from	a	universe	with	size	 	in	

worst-case	time.	The	INSERT	and	DELETE	operations	take	 	amortized
time.	Like	reduced-space	van	Emde	Boas	trees	(see	Problem	20-1),	yfast	tries	use	only

	space	to	store	 	elements.	The	design	of	y-fast	tries	relies	on	perfect	hashing
(see	Section	11.5).

As	a	preliminary	structure,	suppose	that	we	create	a	perfect	hash	table	containing	not
only	every	element	in	the	dynamic	set,	but	every	prefix	of	the	binary	representation	of

every	element	in	the	set.	For	example,	if	 	,	so	that	 	,	and	 	is
in	the	set,	then	because	the	binary	representation	of	 	is	 	,	the	perfect	hash
table	would	contain	the	strings	 	,	 	,	 	,	and	 	.	In	addition	to	the	hash	table,
we	create	a	doubly	linked	list	of	the	elements	currently	in	the	set,	in	increasing	order.

a.	How	much	space	does	this	structure	require?

	.
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b.	Show	how	to	perform	the	MINIMUM	and	MAXIMUM	operations	in	 	time;	the

MEMBER,	PREDECESSOR,	and	SUCCESSOR	operations	in	 	time;	and

the	INSERT	and	DELETE	operations	in	 	time.

To	reduce	the	space	requirement	to	 	,	we	make	the	following	changes	to	the	data
structure:

We	cluster	the	 	elements	into	 	groups	of	size	 	.	(Assume	for	now	that

	divides	 	.)	The	first	group	consists	of	the	 	smallest	elements	in	the	set,

the	second	group	consists	of	the	next	 	smallest	elements,	and	so	on.

We	designate	a	"representative"	value	for	each	group.	The	representative	of	the	
th	group	is	at	least	as	large	as	the	largest	element	in	the	 	th	group,	and	it	is

smaller	than	every	element	of	the	 	st	group.	(The	representative	of	the	last

group	can	be	the	maximum	possible	element	 	.)	Note	that	a	representative
might	be	a	value	not	currently	in	the	set.

We	store	the	 	elements	of	each	group	in	a	balanced	binary	search	tree,	such
as	a	red-black	tree.	Each	representative	points	to	the	balanced	binary	search	tree
for	its	group,	and	each	balanced	binary	search	tree	points	to	its	group's
representative.

The	perfect	hash	table	stores	only	the	representatives,	which	are	also	stored	in	a
doubly	linked	list	in	increasing	order.

We	call	this	structure	a	y-fast	trie.

c.	Show	that	a	y-fast	trie	requires	only	 	space	to	store	 	elements.

The	doubly	linked	list	has	less	than	 	elements,	while	the	binary	search	trees	contains	

nodes,	thus	a	y-fast	trie	requires	 	space.

d.	Show	how	to	perform	the	MINIMUM	and	MAXIMUM	operations	in	 	time
with	a	y-fast	trie.

MINIMUM:	Find	the	minimum	representative	in	the	doubly	linked	list	in	 	,	then	find	the

minimum	element	in	the	binary	search	tree	in	 	.

e.	Show	how	to	perform	the	MEMBER	operation	in	 	time.
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Find	the	smallest	representative	greater	than	 	with	binary	searching	in	 	,	find

the	element	in	the	binary	search	tree	in	 	.

f.	Show	how	to	perform	the	PREDECESSOR	and	SUCCESSOR	operations	in

	time.

SUCCESSOR:	Find	the	smallest	representative	greater	than	 	with	binary	searching	in

	,	then	find	whether	there	is	an	element	in	this	cluster	that	is	larger	than	 	in

	.	If	there	is	on	element	greater	than	 	in	the	representative's	cluster,	then	the
successor	is	in	the	next	representative's	cluster,	we	can	locate	the	next	representative	with

the	doubly	linked	list	in	 	.

g.	Explain	why	the	INSERT	and	DELETE	operations	take	 	time.

Same	as	e,	we	need	to	find	the	cluster	in	 	,	then	the	operations	in	the	binary

search	tree	takes	 	.

h.	Show	how	to	relax	the	requirement	that	each	group	in	a	y-fast	trie	has	exactly	

elements	to	allow	INSERT	and	DELETE	to	run	in	 	amortized	time	without
affecting	the	asymptotic	running	times	of	the	other	operations.

Fixed	representatives.
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21	Data	Structures	for	Disjoint	Sets
21.1	Disjoint-set	operations
21.2	Linked-list	representation	of	disjoint	sets
21.3	Disjoint-set	forests
21.4	Analysis	of	union	by	rank	with	path	compression
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21.1	Disjoint-set	operations

21.1-1

Suppose	that	CONNECTED-COMPONENTS	is	run	on	the	undirected	graph

	,	where	 	and	the	edges	of	 	are
processed	in	the	order

	.
List	the	vertices	in	each	connected	component	after	each	iteration	of	lines	3–5.

Edge
processed Collection	of	disjoint	sets

initial	sets

21.1-2

Show	that	after	all	edges	are	processed	by	CONNECTED-COMPONENTS,	two
vertices	are	in	the	same	connected	component	if	and	only	if	they	are	in	the	same	set.

21.1-3

21.1	Disjoint-set	operations
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During	the	execution	of	CONNECTED-COMPONENTS	on	an	undirected	graph

	with	 	connected	components,	how	many	times	is	FIND-SET	called?

How	many	times	is	UNION	called?	Express	your	answers	in	terms	of	 	,	 	,	and	
.

FIND-SET:	 	.

UNION:	Initially,	there	are	 	components,	and	each	UNION	operation	decreases	the

number	of	connected	components	by	1,	thus	UNION	is	called	 	times.

21.1	Disjoint-set	operations
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20.2	Linked-list	representation	of	disjoint	sets

21.2-1

Write	pseudocode	for	MAKE-SET,	FIND-SET,	and	UNION	using	the	linked-list
representation	and	the	weighted-union	heuristic.	Make	sure	to	specify	the	attributes	that
you	assume	for	set	objects	and	list	objects.

UNION:	if	>	swap	&	size	+=

21.2-2

Show	the	data	structure	that	results	and	the	answers	returned	by	the	FIND-SET
operations	in	the	following	program.	Use	the	linked-list	representation	with	the
weighted-union	heuristic.

1			for	i	=	1	to	16

2								MAKE-SET(x_{i})

3			for	i	=	1	to	15	by	2

4								UNION(x_{i},	x_{i+1})

5			for	i	=	1	to	13	by	4

6								UNION(x_{i},	x_{i+2})

7			UNION(x_{1},	x_{5})

8			UNION(x_{11},	x_{13})

9			UNION(x_{1},	x_{10})

10		FIND-SET(x_{2})

11		FIND-SET(x_{9})

All	same	set.

21.2-3

Adapt	the	aggregate	proof	of	Theorem	21.1	to	obtain	amortized	time	bounds	of	

for	MAKE-SET	and	FIND-SET	and	 	for	UNION	using	the	linked-list
representation	and	the	weighted-union	heuristic.

21.2-4

21.2	Linked-list	representation	of	disjoint	sets
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Give	a	tight	asymptotic	bound	on	the	running	time	of	the	sequence	of	operations	in
Figure	21.3	assuming	the	linked-list	representation	and	the	weighted-union	heuristic.

21.2-5

Professor	Gompers	suspects	that	it	might	be	possible	to	keep	just	one	pointer	in	each
set	object,	rather	than	two	(head	and	tail),	while	keeping	the	number	of	pointers	in	each
list	element	at	two.	Show	that	the	professor's	suspicion	is	well	founded	by	describing
how	to	represent	each	set	by	a	linked	list	such	that	each	operation	has	the	same
running	time	as	the	operations	described	in	this	section.	Describe	also	how	the
operations	work.	Your	scheme	should	allow	for	the	weighted-union	heuristic,	with	the
same	effect	as	described	in	this	section.	(Hint:	Use	the	tail	of	a	linked	list	as	its	set's
representative.)

If	each	node	has	a	pointer	points	to	the	first	node	and	we	use	the	tail	as	the	representative,

then	we	can	find	the	head	(first	node)	with	the	tail's	pointer	in	 	.

21.2-6

Suggest	a	simple	change	to	the	UNION	procedure	for	the	linked-list	representation	that
removes	the	need	to	keep	the	tail	pointer	to	the	last	object	in	each	list.	Whether	or	not
the	weighted-union	heuristic	is	used,	your	change	should	not	change	the	asymptotic
running	time	of	the	UNION	procedure.	(Hint:	Rather	than	appending	one	list	to	another,
splice	them	together.)

We	can	splice/zip	two	lists.	Suppose	one	list	is	 	,	the	other	is
	,	then	the	spliced/zipped	list	is

	.	When	the	shorter	one	is	used	up,	we	can
concatenate	the	remaining	part	of	the	longer	list	directly	to	the	tail	of	merged	list,	thus	it	is
identical	to	the	weighted-union	heuristic.

21.2	Linked-list	representation	of	disjoint	sets
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21.3	Disjoint-set	forests

21.3-1

Redo	Exercise	21.2-2	using	a	disjoint-set	forest	with	union	by	rank	and	path
compression.

21.3-2

Write	a	nonrecursive	version	of	FIND-SET	with	path	compression.

21.3-3

Give	a	sequence	of	 	MAKE-SET,	UNION,	and	FIND-SET	operations,	 	of	which	are

MAKE-SET	operations,	that	takes	 	time	when	we	use	union	by	rank	only.

21.3-4

Suppose	that	we	wish	to	add	the	operation	PRINT-SET	 	,	which	is	given	a	node	
and	prints	all	the	members	of	 	's	set,	in	any	order.	Show	how	we	can	add	just	a	single

attribute	to	each	node	in	a	disjoint-set	forest	so	that	PRINT-SET	 	takes	time	linear	in
the	number	of	members	of	 	's	set	and	the	asymptotic	running	times	of	the	other

operations	are	unchanged.	Assume	that	we	can	print	each	member	of	the	set	in	
time.

Each	member	has	a	pointer	points	to	the	next	element	in	the	set,	which	forms	a	circular

linked	list.	When	union	two	sets	 	and	 	,	swap	 	and	 	to	merged	the	two
linked	lists.

21.3-5	

21.3	Disjoint-set	forests
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Show	that	any	sequence	of	 	MAKE-SET,	FIND-SET,	and	LINK	operations,	where	all

the	LINK	operations	appear	before	any	of	the	FIND-SET	operations,	takes	only	
time	if	we	use	both	path	compression	and	union	by	rank.	What	happens	in	the	same
situation	if	we	use	only	the	path-compression	heuristic?

Suppose	that	there	are	 	MAKE_SET,	then	after	the	LINKs,	there	are	only	 	elements	to

compress,	thus	it	takes	 	time.	It	doesn't	matter	whether	we	use	union	by	rank	or	not.

21.3	Disjoint-set	forests
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21.4	Analysis	of	union	by	rank	with	path
compression

21.4-1

Prove	Lemma	21.4.

Obviously.

21.4-2

Prove	that	every	node	has	rank	at	most	 	.

The	rank	increases	by	1	only	when	 	,	thus	each	time	we	need	the

twice	number	of	elements	to	increase	the	rank	by	1,	therefore	the	rank	is	at	most	 	.

21.4-3

In	light	of	Exercise	21.4-2,	how	many	bits	are	necessary	to	store	 	for	each
node	 	?

	.

21.4-4

Using	Exercise	21.4-2,	give	a	simple	proof	that	operations	on	a	disjoint-set	forest	with

union	by	rank	but	without	path	compression	run	in	 	time.

	.

21.4-5

Professor	Dante	reasons	that	because	node	ranks	increase	strictly	along	a	simple	path
to	the	root,	node	levels	must	monotonically	increase	along	the	path.	In	other	words,	if

	and	 	is	not	a	root,	then	level(	 	)	 	level	 	.	Is	the	professor
correct?

21.4	Analysis	of	union	by	rank	with	path	compression
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No.	Think	about	an	extreme	condition	 	,	since	level	 	,	level

	,	we	have	level	 	 	level	 	.

21.4-6	

Consider	the	function	 	.	Show	that

	for	all	practical	values	of	 	and,	using	Exercise	21.4-2,	show	how	to
modify	the	potential-function	argument	to	prove	that	we	can	perform	a	sequence	of	
MAKESET,	UNION,	and	FIND-SET	operations,	 	of	which	are	MAKE-SET	operations,
on	a	disjoint-set	forest	with	union	by	rank	and	path	compression	in	worst-case	time

	.

21.4	Analysis	of	union	by	rank	with	path	compression
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Problems

21-1	Off-line	minimum

The	off-line	minimum	problem	asks	us	to	maintain	a	dynamic	set	 	of	elements	from

the	domain	 	under	the	operations	INSERT	and	EXTRACT-MIN.	We	are
given	a	sequence	 	of	 	INSERT	and	 	EXTRACT-MIN	calls,	where	each	key	in

	is	inserted	exactly	once.	We	wish	to	determine	which	key	is	returned	by

each	EXTRACT-MIN	call.	Specifically,	we	wish	to	fill	in	an	array	 	,

where	for	 	,	 	is	the	key	returned	by	the	 	th	EXTRACT-
MIN	call.	The	problem	is	"off-line"	in	the	sense	that	we	are	allowed	to	process	the	entire
sequence	 	before	determining	any	of	the	returned	keys.

a.	In	the	following	instance	of	the	off-line	minimum	problem,	each	operation	INSERT

	is	represented	by	the	value	of	 	and	each	EXTRACT-MIN	is	represented	by	the
letter	E:

4,	8,	E,	3,	E,	9,	2,	6,	E,	E,	E,	1,	7,	E,	5.

Fill	in	the	correct	values	in	the	extracted	array.

4,	3,	2,	6,	8,	1.
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To	develop	an	algorithm	for	this	problem,	we	break	the	sequence	 	into	homogeneous
subsequences.	That	is,	we	represent	 	by

where	each	 	represents	a	single	EXTRACT-MIN	call	and	each	 	represents	a

(possibly	empty)	sequence	of	INSERT	calls.	For	each	subsequence	 	,	we	initially

place	the	keys	inserted	by	these	operations	into	a	set	 	,	which	is	empty	if	 	is
empty.	We	then	do	the	following:

OFF-LINE-MINIMUM(m,	n)

1		for	i	=	1	to	n

2							determine	j	such	that	i	\in	K_j

3							if	j	\ne	m	+	1

4												extracted[j]	=	i

5												let	l	be	the	smallest	value	greater	than	j

																			for	which	set	K_l	exists

6												K_l	=	K_j	\cup	K_l	,	destroying	K_j

7		return	extracted

b.	Argue	that	the	array	extracted	returned	by	OFF-LINE-MINIMUM	is	correct.

Greedy.

c.	Describe	how	to	implement	OFF-LINE-MINIMUM	efficiently	with	a	disjoint-set	data
structure.	Give	a	tight	bound	on	the	worst-case	running	time	of	your	implementation.
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class	DisjointSetForest:

				def	__init__(self,	n):

								self.p	=	list(range(n))

				def	union(self,	x,	y):

								self.link(self.find_set(x),	self.find_set(y))

				def	link(self,	x,	y):

								self.p[x]	=	y

				def	find_set(self,	x):

								if	x	!=	self.p[x]:

												self.p[x]	=	self.find_set(self.p[x])

								return	self.p[x]

def	off_line_minimum(q,	n):

				m	=	len([0	for	v	in	q	if	v	==	'E'])

				ds	=	DisjointSetForest(m	+	1)

				pos	=	[-1]	*	(n	+	1)

				i	=	0

				for	v	in	q:

								if	v	==	'E':

												i	+=	1

								else:

												pos[v]	=	i

				extracted	=	[None]	*	m

				for	i	in	xrange(1,	n	+	1):

								j	=	ds.find_set(pos[i])

								if	j	<	m:

												extracted[j]	=	i

												ds.link(j,	j	+	1)

				return	extracted

21-2	Depth	determination
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In	the	depth-determination	problem,	we	maintain	a	forest	 	of	rooted	trees
under	three	operations:

MAKE-TREE	 	creates	a	tree	whose	only	node	is	 	.

FIND-DEPTH	 	returns	the	depth	of	node	 	within	its	tree.

GRAFT	 	makes	node	 	,	which	is	assumed	to	be	the	root	of	a	tree,	become	the
child	of	node	 	,	which	is	assumed	to	be	in	a	different	tree	than	 	but	may	or	may	not
itself	be	a	root.

a.	Suppose	that	we	use	a	tree	representation	similar	to	a	disjoint-set	forest:	 	is	the
parent	of	node	 	,	except	that	 	if	 	is	a	root.	Suppose	further	that	we

implement	GRAFT	 	by	setting	 	and	FIND-DEPTH	 	by	following	the
find	path	up	to	the	root,	returning	a	count	of	all	nodes	other	than	 	encountered.	Show
that	the	worst-case	running	time	of	a	sequence	of	 	MAKE-TREE,	FIND-DEPTH,	and

GRAFT	operations	is	 	.

	MAKE-TREE,	 	GRAFT	to	make	a	chain,	 	FIND-DEPTH.

By	using	the	union-by-rank	and	path-compression	heuristics,	we	can	reduce	the	worst-

case	running	time.	We	use	the	disjoint-set	forest	 	,	where	each	set	

(which	is	itself	a	tree)	corresponds	to	a	tree	 	in	the	forest	 	.	The	tree	structure

within	a	set	 	,	however,	does	not	necessarily	correspond	to	that	of	 	.	In	fact,	the

implementation	of	 	does	not	record	the	exact	parent-child	relationships	but

nevertheless	allows	us	to	determine	any	node's	depth	in	 	.

The	key	idea	is	to	maintain	in	each	node	 	a	"pseudodistance"	 	,	which	is	defined
so	that	the	sum	of	the	pseudodistances	along	the	simple	path	from	 	to	the	root	of	its

set	 	equals	the	depth	of	 	in	 	.	That	is,	if	the	simple	path	from	 	to	its	root	in	 	is

	,	where	 	and	 	is	 	's	root,	then	the	depth	of	 	in	 	is

	.

b.	Give	an	implementation	of	MAKE-TREE.

class	TreeNode:

				def	__init__(self):

								self.d	=	0

								self.p	=	self

								self.rank	=	0
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c.	Show	how	to	modify	FIND-SET	to	implement	FIND-DEPTH.	Your	implementation
should	perform	path	compression,	and	its	running	time	should	be	linear	in	the	length	of
the	find	path.	Make	sure	that	your	implementation	updates	pseudodistances	correctly.

def	find_depth(v):

				if	v	==	v.p:

								return	(v.d,	v)

				(pd,	p)	=	find_depth(v.p)

				d	=	v.d	+	pd

				v.d	=	d	-	p.d

				v.p	=	p

				return	(d,	p)

d.	Show	how	to	implement	GRAFT	 	,	which	combines	the	sets	containing	 	and	
,	by	modifying	the	UNION	and	LINK	procedures.	Make	sure	that	your	implementation

updates	pseudodistances	correctly.	Note	that	the	root	of	a	set	 	is	not	necessarily	the

root	of	the	corresponding	tree	 	.

def	graft(r,	v):

				(vd,	vp)	=	find_depth(v)

				if	r.rank	<=	vp.rank:

								r.d	=	vd	+	1

								r.p	=	vp

								if	r.rank	==	vp.rank:

												vp.rank	+=	1

				else:

								r.d	=	vd	+	1

								vp.d	=	vp.d	-	r.d

								vp.p	=	r

e.	Give	a	tight	bound	on	the	worst-case	running	time	of	a	sequence	of	 	MAKE-TREE,
FIND-DEPTH,	and	GRAFT	operations,	 	of	which	are	MAKE-TREE	operations.

	.

21-3	Tarjan's	off-line	least-common-ancestors	algorithm
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The	least	common	ancestor	of	two	nodes	 	and	 	in	a	rooted	tree	 	is	the	node	 	that
is	an	ancestor	of	both	 	and	 	and	that	has	the	greatest	depth	in	 	.	In	the	off-line
least-common-ancestors	problem,	we	are	given	a	rooted	tree	 	and	an	arbitrary	set

	of	unordered	pairs	of	nodes	in	 	,	and	we	wish	to	determine	the	least
common	ancestor	of	each	pair	in	 	.

To	solve	the	off-line	least-common-ancestors	problem,	the	following	procedure	performs

a	tree	walk	of	 	with	the	initial	call	LCA	 	.	We	assume	that	each	node	is
colored	WHITE	prior	to	the	walk.

LCA(u)

	1		MAKE-SET(u)

	2		FIND-SET(u).ancestor	=	u

	3		for	each	child	v	of	u	in	T

	4							LCA(v)

	5							UNION(u,	v)

	6							FIND-SET(u).ancestor	=	u

	7		u.color	=	BLACK

	8		for	each	node	v	such	that	{u,	v}	\in	P

	9							if	v.color	==	BLACK

10												print	"The	least	common	ancestor	of"

																				u	"and"	v	"is"	FIND-SET(v).ancestor

a.	Argue	that	line	10	executes	exactly	once	for	each	pair	 	.

Each	node	is	visited	exactly	once,	if	 	is	visited	before	 	,	then	 	is	WHITE,	line	10	will	not
be	executed.

b.	Argue	that	at	the	time	of	the	call	LCA	 	,	the	number	of	sets	in	the	disjoint-set	data
structure	equals	the	depth	of	 	in	 	.

LCA(v)	increase	the	number	of	sets	by	1,	UNION(u,	v)	decrease	the	number	of	sets	by	1.

c.	Prove	that	LCA	correctly	prints	the	least	common	ancestor	of	 	and	 	for	each	pair

	.

The	visited	nodes	always	point	to	the	current	chain	of	search	path.

d.	Analyze	the	running	time	of	LCA,	assuming	that	we	use	the	implementation	of	the
disjoint-set	data	structure	in	Section	21.3.
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22	Elementary	Graph	Algorithms
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22.5	Strongly	connected	components
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22.1	Representations	of	graphs

22.1-1

Given	an	adjacency-list	representation	of	a	directed	graph,	how	long	does	it	take	to
compute	the	out-degree	of	every	vertex?	How	long	does	it	take	to	compute	the	in-
degrees?

Out-degree:	 	.

In-degree:	 	.

22.1-2

Give	an	adjacency-list	representation	for	a	complete	binary	tree	on	7	vertices.	Give	an
equivalent	adjacency-matrix	representation.	Assume	that	vertices	are	numbered	from	1
to	7	as	in	a	binary	heap.

Adjacency-list	representation

Adjacency-matrix	representation

22.1	Representations	of	graphs
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22.1-3

The	transpose	of	a	directed	graph	 	is	the	graph	 	,

where	 	.	Thus,	 	is	 	with	all	its	edges

reversed.	Describe	efficient	algorithms	for	computing	 	from	 	,	for	both	the
adjacency-list	and	adjacency-matrix	representations	of	 	.	Analyze	the	running	times
of	your	algorithms.

Adjacency-list	representation

Reconstruct,	 	.

Adjacency-matrix	representation

Transpose	matrix,	 	.

22.1-4

Given	an	adjacency-list	representation	of	a	multigraph	 	,	describe	an

	-time	algorithm	to	compute	the	adjacency-list	representation	of	the

"equivalent"	undirected	graph	 	,	where	 	consists	of	the	edges	in	
with	all	multiple	edges	between	two	vertices	replaced	by	a	single	edge	and	with	all	self-
loops	removed.

Merge	sort.

22.1-5

The	square	of	a	directed	graph	 	is	the	graph	 	such	that

	if	and	only	 	contains	a	path	with	at	most	two	edges	between	 	and	 	.

Describe	efficient	algorithms	for	computing	 	from	 	for	both	the	adjacency-list	and
adjacency-matrix	representations	of	 	.	Analyze	the	running	times	of	your	algorithms.

Adjacency-list	representation

for	i	in	Adj[u]

				Adj^2[u].append(i)

				for	j	in	Adj[i]

								Adj^2[u].append(j)

22.1	Representations	of	graphs
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The	running	time	depends	on	the	distribution	of	edges.

Adjacency-matrix	representation

for	i	=	1	to	V

				for	j	=	1	to	V

								if	a_{ij}	=	1

												a^2_{ij}	=	1

								else

												for	k	=	1	to	V

																if	a_{ik}	==	1	and	a_{kj}	==	1:

																				a^2_{ij}	=	1

																				break

	.

22.1-6

Most	graph	algorithms	that	take	an	adjacency-matrix	representation	as	input	require

time	 	,	but	there	are	some	exceptions.	Show	how	to	determine	whether	a

directed	graph	 	contains	a	universal	sink	-	a	vertex	with	in-degree	 	and	out-

degree	0	-	in	time	 	,	given	an	adjacency	matrix	for	 	.

Starting	from	 	,	if	 	then	 	,	otherwise	 	.

22.1-7

The	incidence	matrix	of	a	directed	graph	 	with	no	self-loops	is	a

	matrix	 	such	that

Describe	what	the	entries	of	the	matrix	product	 	represent,	where	 	is	the
transpose	of	 	.

	,	the	result	of	 	could	be	0,	1	and	-1.	0	indicates	

and	 	are	not	connected	by	edge	 	;	1	indicates	 	;	-1	indicates	there	is	an	edge	from	

to	 	or	from	 	to	 	.	Therefore,	if	 	,	 	is	the	degree	of	vertex	 	;	if	 	,

22.1	Representations	of	graphs
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	is	the	negative	of	number	of	edges	connecting	 	and	 	.

22.1-8

Suppose	that	instead	of	a	linked	list,	each	array	entry	 	is	a	hash	table

containing	the	vertices	 	for	which	 	.	If	all	edge	lookups	are	equally	likely,
what	is	the	expected	time	to	determine	whether	an	edge	is	in	the	graph?	What
disadvantages	does	this	scheme	have?	Suggest	an	alternate	data	structure	for	each
edge	list	that	solves	these	problems.	Does	your	alternative	have	disadvantages
compared	to	the	hash	table?

Expected	time:	 	.
Disadvantages:	More	space.
Alternative:	BST,	RB-Trees,	...

Disadvantages:	 	.

22.1	Representations	of	graphs
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22.2	Breadth-first	search

22.2-1

Show	the	 	and	 	values	that	result	from	running	breadth-first	search	on	the	directed
graph	of	Figure	22.2(a),	using	vertex	3	as	the	source.

\ 1 2 3 4 5 6

3 0 2 1 1

NIL 4 NIL 5 3 3

22.2-2

Show	the	 	and	 	values	that	result	from	running	breadth-first	search	on	the	undirected
graph	of	Figure	22.3,	using	vertex	 	as	the	source.

\

4 3 1 0 5 2 1 1

NIL

22.2-3

Show	that	using	a	single	bit	to	store	each	vertex	color	suffices	by	arguing	that	the	BFS
procedure	would	produce	the	same	result	if	lines	5	and	14	were	removed.

Duplicate.

22.2-4

What	is	the	running	time	of	BFS	if	we	represent	its	input	graph	by	an	adjacency	matrix
and	modify	the	algorithm	to	handle	this	form	of	input?

	.

22.2-5

22.2	Breadth-first	search
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Argue	that	in	a	breadth-first	search,	the	value	 	assigned	to	a	vertex	 	is
independent	of	the	order	in	which	the	vertices	appear	in	each	adjacency	list.	Using
Figure	22.3	as	an	example,	show	that	the	breadth-first	tree	computed	by	BFS	can
depend	on	the	ordering	within	adjacency	lists.

22.2-6

Give	an	example	of	a	directed	graph	 	,	a	source	vertex	 	,	and	a

set	of	tree	edges	 	such	that	for	each	vertex	 	,	the	unique	simple	path	in

the	graph	 	from	 	to	 	is	a	shortest	path	in	 	,	yet	the	set	of	edges	
cannot	be	produced	by	running	BFS	on	 	,	no	matter	how	the	vertices	are	ordered	in
each	adjacency	list.

22.2-7

There	are	two	types	of	professional	wrestlers:	"babyfaces"	("good	guys")	and	"heels"
("bad	guys").	Between	any	pair	of	professional	wrestlers,	there	may	or	may	not	be	a
rivalry.	Suppose	we	have	 	professional	wrestlers	and	we	have	a	list	of	 	pairs	of

wrestlers	for	which	there	are	rivalries.	Give	an	 	-time	algorithm	that
determines	whether	it	is	possible	to	designate	some	of	the	wrestlers	as	babyfaces	and
the	remainder	as	heels	such	that	each	rivalry	is	between	a	babyface	and	a	heel.	If	it	is
possible	to	perform	such	a	designation,	your	algorithm	should	produce	it.

BFS,	the	new	reachable	node	should	have	a	different	type.	If	the	new	node	already	have	the
same	type	with	the	current	node,	then	it	is	impossible	to	perform	such	a	designation.

22.2	Breadth-first	search
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22.2-8	

The	diameter	of	a	tree	 	is	defined	as	 	,	that	is,	the
largest	of	all	shortest-path	distances	in	the	tree.	Give	an	efficient	algorithm	to	compute
the	diameter	of	a	tree,	and	analyze	the	running	time	of	your	algorithm.

BFS	with	a	random	node	as	the	source,	then	BFS	from	the	node	with	the	largest	 	,	the

largest	 	in	the	second	BFS	is	the	diameter	of	the	tree,	 	.

22.2-9

Let	 	be	a	connected,	undirected	graph.	Give	an	 	-time
algorithm	to	compute	a	path	in	 	that	traverses	each	edge	in	 	exactly	once	in	each
direction.	Describe	how	you	can	find	your	way	out	of	a	maze	if	you	are	given	a	large
supply	of	pennies.

Eulerian	path.

22.2	Breadth-first	search
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22.3	Depth-first	search

22.3-1

Make	a	3-by-3	chart	with	row	and	column	labels	WHITE,	GRAY,	and	BLACK.	In	each

cell	 	,	indicate	whether,	at	any	point	during	a	depth-first	search	of	a	directed

graph,	there	can	be	an	edge	from	a	vertex	of	color	 	to	a	vertex	of	color	 	.	For	each
possible	edge,	indicate	what	edge	types	it	can	be.	Make	a	second	such	chart	for	depth-
first	search	of	an	undirected	graph.

Directed:

	\	 WHITE GRAY BLACK

WHITE TBFC BC C

GRAY TF TBF TFC

BLACK BC TBFC

Undirected:

	\	 WHITE GRAY BLACK

WHITE TB TB

GRAY TB TB TB

BLACK TB TB

22.3-2

Show	how	depth-first	search	works	on	the	graph	of	Figure	22.6.	Assume	that	the	for
loop	of	lines	5–7	of	the	DFS	procedure	considers	the	vertices	in	alphabetical	order,	and
assume	that	each	adjacency	list	is	ordered	alphabetically.	Show	the	discovery	and
finishing	times	for	each	vertex,	and	show	the	classification	of	each	edge.

22.3	Depth-first	search
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Tree	edges:	(q,	s)	(s,	v)	(v,	w)	(q,	t)	(t,	x)	(x,	z)	(t,	y)	(r,	u)
Back	edges:	(w,	s)	(z,	x),	(y,	q)
Forward	edges:	(q,	w)
Cross	edges:	(r,	y)	(u,	y)

22.3-3

Show	the	parenthesis	structure	of	the	depth-first	search	of	Figure	22.4.

22.3	Depth-first	search
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22.3-4

Show	that	using	a	single	bit	to	store	each	vertex	color	suffices	by	arguing	that	the	DFS
procedure	would	produce	the	same	result	if	line	3	of	DFS-VISIT	was	removed.

Line	3:	color	=	BLACK

22.3-5

Show	that	edge	 	is

a.	a	tree	edge	or	forward	edge	if	and	only	if	 	,

	is	an	ancestor	of	 	.

b.	a	back	edge	if	and	only	if	 	,	and

	is	a	descendant	of	 	.

c.	a	cross	edge	if	and	only	if	 	.

	is	visited	before	 	.

22.3	Depth-first	search
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22.3-6

Show	that	in	an	undirected	graph,	classifying	an	edge	 	as	a	tree	edge	or	a	back

edge	according	to	whether	 	or	 	is	encountered	first	during	the	depth-first
search	is	equivalent	to	classifying	it	according	to	the	ordering	of	the	four	types	in	the
classification	scheme.

By	changing	an	undirected	graph	into	a	directed	graph	with	two-way	edges,	an	equivalent
result	is	produced.

22.3-7

Rewrite	the	procedure	DFS,	using	a	stack	to	eliminate	recursion.

Goto.

22.3-8

Give	a	counterexample	to	the	conjecture	that	if	a	directed	graph	 	contains	a	path	from
	to	 	,	and	if	 	in	a	depth-first	search	of	 	,	then	 	is	a	descendant	of	 	in

the	depth-first	forest	produced.

	,	search	 	first.

22.3-9

Give	a	counterexample	to	the	conjecture	that	if	a	directed	graph	 	contains	a	path

from	 	to	 	,	then	any	depth-first	search	must	result	in	 	.

	,	search	 	first.

22.3-10

Modify	the	pseudocode	for	depth-first	search	so	that	it	prints	out	every	edge	in	the
directed	graph	 	,	together	with	its	type.	Show	what	modifications,	if	any,	you	need	to
make	if	 	is	undirected.

See	exercises	22.3-5.

22.3-11

22.3	Depth-first	search
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Explain	how	a	vertex	 	of	a	directed	graph	can	end	up	in	a	depth-first	tree	containing
only	 	,	even	though	 	has	both	incoming	and	outgoing	edges	in	 	.

	,	search	 	then	search	 	.

22.3-12

Show	that	we	can	use	a	depth-first	search	of	an	undirected	graph	 	to	identify	the
connected	components	of	 	,	and	that	the	depth-first	forest	contains	as	many	trees	as
	has	connected	components.	More	precisely,	show	how	to	modify	depth-first	search

so	that	it	assigns	to	each	vertex	 	an	integer	label	 	between	 	and	 	,	where	 	is
the	number	of	connected	components	of	 	,	such	that	 	if	and	only	if	
and	 	are	in	the	same	connected	component.

DFS(G)

1		for	each	vertex	u	in	G.V

2						u.color	=	WHITE

3						u:pi	=	NIL

4		time	=	0

5		cc	=	0

6		for	each	vertex	u	in	G.V

7						if	u.color	==	WHITE

8										cc	=	cc	+	1

9										DFS-VISIT(G,	u)

DFS-VISIT(G,	u)

1		u.cc	=	cc

...

22.3-13	

A	directed	graph	 	is	singly	connected	if	 	implies	that	 	contains

at	most	one	simple	path	from	 	to	 	for	all	vertices	 	.	Give	an	efficient
algorithm	to	determine	whether	or	not	a	directed	graph	is	singly	connected.

Run	DFS	for	every	vertex,	if	 	is	BLACK,	then	the	graph	is	not	singly	connected,

	.

22.3	Depth-first	search
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22.4	Topological	sort

22.4-1

Show	the	ordering	of	vertices	produced	by	TOPOLOGICAL-SORT	when	it	is	run	on	the
dag	of	Figure	22.8,	under	the	assumption	of	Exercise	22.3-2.

p,	n,	o,	s,	m,	r,	y,	v,	x,	w,	z,	u,	q,	t.

22.4-2

Give	a	linear-time	algorithm	that	takes	as	input	a	directed	acyclic	graph	
and	two	vertices	 	and	 	,	and	returns	the	number	of	simple	paths	from	 	to	 	in	 	.	For
example,	the	directed	acyclic	graph	of	Figure	22.8	contains	exactly	four	simple	paths
from	vertex	 	to	vertex	 	:	 	,	 	,	 	,	and	 	.	(Your	algorithm
needs	only	to	count	the	simple	paths,	not	list	them.)

Topological	sort	+	dynamic	programming.

22.4-3

22.4	Topological	sort
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Give	an	algorithm	that	determines	whether	or	not	a	given	undirected	graph

	contains	a	cycle.	Your	algorithm	should	run	in	 	time,	independent

of	 	.

Undirected	+	acyclic	->	forest.

DFS,	if	there	is	a	back	edge,	then	it	contains	cycle.	At	most	 	edges	are	needed	to

examine	since	there	are	at	most	 	edges	in	the	forest.

22.4-4

Prove	or	disprove:	If	a	directed	graph	 	contains	cycles,	then	TOPOLOGICAL-SORT

	produces	a	vertex	ordering	that	minimizes	the	number	of	"bad"	edges	that	are
inconsistent	with	the	ordering	produced.

Bad	edges	if	begins	from	 	:	 	.	Bad	edge	if	begins	from	 	:	 	.

The	number	of	bad	edges	depends	on	the	ordering	of	DFS.

22.4-5

Another	way	to	perform	topological	sorting	on	a	directed	acyclic	graph	 	is
to	repeatedly	find	a	vertex	of	in-degree	 	,	output	it,	and	remove	it	and	all	of	its	outgoing
edges	from	the	graph.	Explain	how	to	implement	this	idea	so	that	it	runs	in	time

	.	What	happens	to	this	algorithm	if	 	has	cycles?

Maintain	the	in-degrees	of	the	nodes.	If	the	in-degree	is	0,	then	add	the	node	to	a	queue.
When	removing	a	node,	all	the	nodes	it	connects	to	should	subtract	their	in-degrees	by	1.

22.4	Topological	sort
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22.5	Strongly	connected	components

22.5-1

How	can	the	number	of	strongly	connected	components	of	a	graph	change	if	a	new
edge	is	added?

	.

22.5-2

Show	how	the	procedure	STRONGLY-CONNECTED-COMPONENTS	works	on	the
graph	of	Figure	22.6.	Specifically,	show	the	finishing	times	computed	in	line	1	and	the
forest	produced	in	line	3.	Assume	that	the	loop	of	lines	5–7	of	DFS	considers	vertices	in
alphabetical	order	and	that	the	adjacency	lists	are	in	alphabetical	order.

{r},	{u},	{q,	y,	t},	{x,	z},	{s,	w,	v}

22.5-3

Professor	Bacon	claims	that	the	algorithm	for	strongly	connected	components	would	be
simpler	if	it	used	the	original	(instead	of	the	transpose)	graph	in	the	second	depth-first
search	and	scanned	the	vertices	in	order	of	increasing	finishing	times.	Does	this
simpler	algorithm	always	produce	correct	results?

22.5	Strongly	connected	components
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No.

22.5-4

Prove	that	for	any	directed	graph	 	,	we	have	 	.	That	is,	the

transpose	of	the	component	graph	of	 	is	the	same	as	the	component	graph	of	 	.

	.

22.5-5

Give	an	 	-time	algorithm	to	compute	the	component	graph	of	a	directed

graph	 	.	Make	sure	that	there	is	at	most	one	edge	between	two	vertices
in	the	component	graph	your	algorithm	produces.

Add	edge	 	if	 	,	 	and	there	is	an	edge	 	.

22.5-6

Given	a	directed	graph	 	,	explain	how	to	create	another	graph

	such	that	(a)	 	has	the	same	strongly	connected	components	as	 	,

(b)	 	has	the	same	component	graph	as	 	,	and	(c)	 	is	as	small	as	possible.

Describe	a	fast	algorithm	to	compute	 	.

Calculate	SCCs,	create	a	loop	in	each	SCC,	connect	SCCs	with	one	edge.

22.5-7

A	directed	graph	 	is	semiconnected	if,	for	all	pairs	of	vertices	
,	we	have	 	or	 	.	Give	an	efficient	algorithm	to	determine	whether	or	not
	is	semiconnected.	Prove	that	your	algorithm	is	correct,	and	analyze	its	running	time.

If	 	,	there	is	an	edge	 	,	 	,	 	,	then	the	graph	is

semiconnected,	 	.

22.5	Strongly	connected	components
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Problems

22-1	Classifying	edges	by	breadth-first	search

A	depth-first	forest	classifies	the	edges	of	a	graph	into	tree,	back,	forward,	and	cross
edges.	A	breadth-first	tree	can	also	be	used	to	classify	the	edges	reachable	from	the
source	of	the	search	into	the	same	four	categories.

a.	Prove	that	in	a	breadth-first	search	of	an	undirected	graph,	the	following	properties
hold:

1.	 There	are	no	back	edges	and	no	forward	edges.

2.	 For	each	tree	edge	 	,	we	have	 	.

3.	 For	each	cross	edge	 	,	we	have	 	or	 	.

b.	Prove	that	in	a	breadth-first	search	of	a	directed	graph,	the	following	properties	hold:

1.	 There	are	no	forward	edges.

2.	 For	each	tree	edge	 	,	we	have	 	.

3.	 For	each	cross	edge	 	,	we	have	 	.

4.	 For	each	back	edge	 	,	we	have	 	.

22-2	Articulation	points,	bridges,	and	biconnected
components

Let	 	be	a	connected,	undirected	graph.	An	articulation	point	of	 	is	a
vertex	whose	removal	disconnects	 	.	A	bridge	of	 	is	an	edge	whose	removal
disconnects	 	.	A	biconnected	component	of	 	is	a	maximal	set	of	edges	such	that
any	two	edges	in	the	set	lie	on	a	common	simple	cycle.	Figure	22.10	illustrates	these
definitions.	We	can	determine	articulation	points,	bridges,	and	biconnected	components

using	depth-first	search.	Let	 	be	a	depth-first	tree	of	 	.

a.	Prove	that	the	root	of	 	is	an	articulation	point	of	 	if	and	only	if	it	has	at	least	two

children	in	 	.

At	least	two	children	=>	at	least	two	components	that	are	not	connected.
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b.	Let	 	be	a	nonroot	vertex	of	 	.	Prove	that	 	is	an	articulation	point	of	 	if	and
only	if	 	has	a	child	 	such	that	there	is	no	back	edge	from	 	or	any	descendant	of	 	to
a	proper	ancestor	of	 	.

Connect	to	ancestor	=>	loop.

c.	Let

.

Show	how	to	computer	 	for	all	vertices	 	in	 	time.

In	DFS,	for	each	edge,	 	.

d.	Show	how	to	compute	all	articulation	points	in	 	time.

(1)	Root	and	have	at	least	two	children.

(2)	Nonroot	 	and	there	exist	an	edge	 	that	 	.

e.	Prove	that	an	edge	of	 	is	a	bridge	if	and	only	if	it	does	not	lie	on	any	simple	cycle	of
	.

No	cycle	=>	two	components	that	are	connected	only	by	one	edge.

f.	Show	how	to	compute	all	the	bridges	of	 	in	 	time.

	.

g.	Prove	that	the	biconnected	components	of	 	partition	the	nonbridge	edges	of	 	.

h.	Give	an	 	-time	algorithm	to	label	each	edge	 	of	 	with	a	positive	integer

	such	that	 	if	and	only	if	 	and	 	are	in	the	same	biconnected
component.

Delete	bridges	then	DFS/BFS.

22-3	Euler	tour
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An	Euler	tour	of	a	strongly	connected,	directed	graph	 	is	a	cycle	that
traverses	each	edge	of	 	exactly	once,	although	it	may	visit	a	vertex	more	than	once.

a.	Show	that	 	has	an	Euler	tour	if	and	only	if	in-degree	 	out-degree	 	for
each	vertex	 	.

Part	1	:	To	prove	Euler	tour	exists	⇒	in-degree(v)=out-degree(v)

Euler	tour	can	be	decomposed	into	a	set	of	edge-disjoint	simple	cycles,	that	when	combined
form	the	tour.	First,	for	each	sub-cycle,	since	they	are	simple	edge-disjoint	cycles,	each
vertex	v	in	the	cycle	has	one	edge	coming	into	it	and	one	edge	leading	out	of	it.	Therefore,
in-degree(v)=out-degree(v)	for	each	of	the	cycles.	Second,	for	the	entire	graph,	since	an
Euler	tour	exists,	each	simple	cycle	must	be	connected	together,	where	each	cycle	has	an
edge	coming	in	and	an	edge	going	out.	Therefore,	for	each	vertex	v	in	the	graph,	in-
degree(v)=	out-degree(v).

Part	2:	To	prove	in-degree(v)=out-degree(v)	=>	Euler	tour	exists

Start	from	v,	and	chose	any	outgoing	edge	of	v,	say	(v,	u).	Since	in-degree(u)	=	out-
degree(u)	we	can	pick	some	outgoing	edge	of	u	and	continue	visiting	edges.	Each	time	we
pick	an	edge,	we	can	remove	it	from	further	consideration.	At	each	vertex	other	than	v,	at	the
time	we	visit	an	entering	edge,	there	must	be	an	outgoing	edge	left	unvisited,	since	in-
degree	=	out-degree	for	all	vertices.	The	only	vertex	for	which	there	may	not	be	an	unvisited
outgoing	edge	is	v—because	we	started	the	cycle	by	visiting	one	of	v’s	outgoing	edges.
Since	there’s	always	a	leaving	edge	we	can	visit	for	any	vertex	other	than	v,	eventually	the
cycle	must	return	to	v,	thus	proving	the	claim.

b.	Describe	an	 	-time	algorithm	to	find	an	Euler	tour	of	 	if	one	exists.	(Hint:
Merge	edge-disjoint	cycles.)
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		1	//defined	a	Vertex	in	a	strong-connected	directed	graph

		2	class	Vertex{

		3					List<Vertex>	nexts;

		4					List<Vertex>	prevs;

		5	

		6					static	boolean	reachable(Vertex	v,	Vertex	u){

		7									//return	true	only	if	exist	a	path	from	v	-	>	u

		8									//can	be	implemented	with	BFS	or	DFS	algorithm

		9					}

	10	

	11					List<Vertex>	eulerTour(){

	12									List<Vertex>	tour=	new	LinkedList<>();

	13	

	14									for(Vertex	u	:	this.nexts){

	15													if(this.nexts.size()	==	1	||	reachable(u,	this)){

	16																	tour.add(u);

	17																	this.nexts.remove(u);

	18																	tour.addAll(u.eulerTour());

	19													}

	20									}

	21	

	22									return	tour;

	23					}

	24	}

22-4	Reachability

Let	 	be	a	directed	graph	in	which	each	vertex	 	is	labeled	with	a

unique	integer	 	from	the	set	 	.	For	each	vertex	 	,	let

	be	the	set	of	vertices	that	are	reachable	from	 	.	Define

	to	be	the	vertex	in	 	whose	label	is	minimum,	i.e.,	 	is	the	vertex

	such	that	 	.	Give	an	 	-time

algorithm	that	computes	 	for	all	vertices	 	.

DFS	from	the	minimum	 	in	 	.
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23	Minimum	Spanning	Trees
23.1	Growing	a	minimum	spanning	tree
23.2	The	algorithms	of	Kruskal	and	Prim
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23.1	Growing	a	minimum	spanning	tree

23.1-1

Let	 	be	a	minimum-weight	edge	in	a	connected	graph	 	.	Show	that	
belongs	to	some	minimum	spanning	tree	of	 	.

	.

23.1-2

Professor	Sabatier	conjectures	the	following	converse	of	Theorem	23.1.	Let

	be	a	connected,	undirected	graph	with	a	real-valued	weight	function	
defined	on	 	.	Let	 	be	a	subset	of	 	that	is	included	in	some	minimum	spanning	tree

for	 	,	let	 	be	any	cut	of	 	that	respects	 	,	and	let	 	be	a	safe

edge	for	 	crossing	 	.	Then,	 	is	a	light	edge	for	the	cut.	Show	that
the	professor's	conjecture	is	incorrect	by	giving	a	counterexample.

Not	light.

23.1-3

Show	that	if	an	edge	 	is	contained	in	some	minimum	spanning	tree,	then	it	is	a
light	edge	crossing	some	cut	of	the	graph.

	is	a	bridge	in	the	minimum	spanning	tree,	thus	 	can	be	divided	into	two
components.

23.1-4

Give	a	simple	example	of	a	connected	graph	such	that	the	set	of	edges	 	there

exists	a	cut	 	such	that	 	is	a	light	edge	crossing	 	does
not	form	a	minimum	spanning	tree.

	with	the	same	weight.

23.1-5

23.1	Growing	a	minimum	spanning	tree
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Let	 	be	a	maximum-weight	edge	on	some	cycle	of	connected	graph	 	.

Prove	that	there	is	a	minimum	spanning	tree	of	 	that	is	also	a
minimum	spanning	tree	of	 	.	That	is,	there	is	a	minimum	spanning	tree	of	 	that	does
not	include	 	.

The	edges	in	the	cycle	are	lighter	than	the	maximum-weight	edge.

23.1-6

Show	that	a	graph	has	a	unique	minimum	spanning	tree	if,	for	every	cut	of	the	graph,
there	is	a	unique	light	edge	crossing	the	cut.	Show	that	the	converse	is	not	true	by
giving	a	counterexample.

Counterexample:	 	with	the	same	weight.

23.1-7

Argue	that	if	all	edge	weights	of	a	graph	are	positive,	then	any	subset	of	edges	that
connects	all	vertices	and	has	minimum	total	weight	must	be	a	tree.	Give	an	example	to
show	that	the	same	conclusion	does	not	follow	if	we	allow	some	weights	to	be
nonpositive.

Not	a	tree:	remove	one	edge	from	the	cycle.

Nonpositive:	 	with	the	same	weight	-1.

23.1-8

Let	 	be	a	minimum	spanning	tree	of	a	graph	 	,	and	let	 	be	the	sorted	list	of	the

edge	weights	of	 	.	Show	that	for	any	other	minimum	spanning	tree	 	of	 	,	the	list

	is	also	the	sorted	list	of	edge	weights	of	 	.

23.1-9

Let	 	be	a	minimum	spanning	tree	of	a	graph	 	,	and	let	 	be	a	subset

of	 	.	Let	 	be	the	subgraph	of	 	induced	by	 	,	and	let	 	be	the	subgraph	of	

induced	by	 	.	Show	that	if	 	is	connected,	then	 	is	a	minimum	spanning	tree	of

	.

Cut	 	.

23.1	Growing	a	minimum	spanning	tree
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23.1-10

Given	a	graph	 	and	a	minimum	spanning	tree	 	,	suppose	that	we	decrease	the
weight	of	one	of	the	edges	in	 	.	Show	that	 	is	still	a	minimum	spanning	tree	for	 	.
More	formally,	let	 	be	a	minimum	spanning	tree	for	 	with	edge	weights	given	by

weight	function	 	.	Choose	one	edge	 	and	a	positive	number	 	,	and

define	the	weight	function	 	by

Show	that	 	is	a	minimum	spanning	tree	for	 	with	edge	weights	given	by	 	.

Lighter.

23.1-11	

Given	a	graph	 	and	a	minimum	spanning	tree	 	,	suppose	that	we	decrease	the
weight	of	one	of	the	edges	not	in	 	.	Give	an	algorithm	for	finding	the	minimum
spanning	tree	in	the	modified	graph.

If	the	edge	 	is	not	in	 	and	its	weight	is	less	than	some	edge	in	the	path	from	 	to	 	,

then	replace	the	edge	with	maximum	weight	in	the	path	with	 	.

23.1	Growing	a	minimum	spanning	tree
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23.2	The	algorithms	of	Kruskal	and	Prim

23.2-1

Kruskal's	algorithm	can	return	different	spanning	trees	for	the	same	input	graph	 	,
depending	on	how	it	breaks	ties	when	the	edges	are	sorted	into	order.	Show	that	for
each	minimum	spanning	tree	 	of	 	,	there	is	a	way	to	sort	the	edges	of	 	in
Kruskal's	algorithm	so	that	the	algorithm	returns	 	.

23.2-2

Suppose	that	we	represent	the	graph	 	as	an	adjacency	matrix.	Give	a

simple	implementation	of	Prim's	algorithm	for	this	case	that	runs	in	 	time.

23.2-3

For	a	sparse	graph	 	,	where	 	,	is	the	implementation	of
Prim's	algorithm	with	a	Fibonacci	heap	asymptotically	faster	than	the	binary-heap

implementation?	What	about	for	a	dense	graph,	where	 	?	How	must	the

sizes	 	and	 	be	related	for	the	Fibonacci-heap	implementation	to	be
asymptotically	faster	than	the	binary-heap	implementation?

Binary-heap:	

Fibonacci-heap:	

Binary-heap:	

Fibonacci-heap:	

Binary-heap:	

23.2	The	algorithms	of	Kruskal	and	Prim
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Fibonacci-heap:	

23.2-4

Suppose	that	all	edge	weights	in	a	graph	are	integers	in	the	range	from	 	to	 	.	How
fast	can	you	make	Kruskal's	algorithm	run?	What	if	the	edge	weights	are	integers	in	the
range	from	 	to	 	for	some	constant	 	?

	to	

Use	counting	sort,	 	.

	to	

	.

23.2-5

Suppose	that	all	edge	weights	in	a	graph	are	integers	in	the	range	from	 	to	 	.	How
fast	can	you	make	Prim's	algorithm	run?	What	if	the	edge	weights	are	integers	in	the
range	from	 	to	 	for	some	constant	 	?

	to	

Use	van	Emde	Boas	trees,	 	.

	to	

	.

23.2-6	

Suppose	that	the	edge	weights	in	a	graph	are	uniformly	distributed	over	the	halfopen

interval	 	.	Which	algorithm,	Kruskal's	or	Prim's,	can	you	make	run	faster?

23.2-7	

Suppose	that	a	graph	 	has	a	minimum	spanning	tree	already	computed.	How	quickly
can	we	update	the	minimum	spanning	tree	if	we	add	a	new	vertex	and	incident	edges
to	 	?

23.2	The	algorithms	of	Kruskal	and	Prim
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23.2-8

Professor	Borden	proposes	a	new	divide-and-conquer	algorithm	for	computing

minimum	spanning	trees,	which	goes	as	follows.	Given	a	graph	 	,

partition	the	set	 	of	vertices	into	two	sets	 	and	 	such	that	 	and	 	differ	by

at	most	 	.	Let	 	be	the	set	of	edges	that	are	incident	only	on	vertices	in	 	,	and	let

	be	the	set	of	edges	that	are	incident	only	on	vertices	in	 	.	Recursively	solve	a

minimum-spanning-tree	problem	on	each	of	the	two	subgraphs	 	and

	.	Finally,	select	the	minimum-weight	edge	in	 	that	crosses	the	cut

	,	and	use	this	edge	to	unite	the	resulting	two	minimum	spanning	trees	into	a
single	spanning	tree.

Either	argue	that	the	algorithm	correctly	computes	a	minimum	spanning	tree	of	 	,	or
provide	an	example	for	which	the	algorithm	fails.

The	algorithm	fails.	Suppose	 	,	the	weight	of	 	and

	is	1,	and	the	weight	of	 	is	1000,	partition	the	set	into	two	sets	 	and

	.

23.2	The	algorithms	of	Kruskal	and	Prim
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Problems

23-1	Second-best	minimum	spanning	tree

Let	 	be	an	undirected,	connected	graph	whose	weight	function	is

	,	and	suppose	that	 	and	all	edge	weights	are	distinct.

We	define	a	second-best	minimum	spanning	tree	as	follows.	Let	 	be	the	set	of	all

spanning	trees	of	 	,	and	let	 	be	a	minimum	spanning	tree	of	 	.	Then	a	second-
best	minimum	spanning	tree	is	a	spanning	tree	 	such	that

	.

a.	Show	that	the	minimum	spanning	tree	is	unique,	but	that	the	second-best	minimum
spanning	tree	need	not	be	unique.

b.	Let	 	be	the	minimum	spanning	tree	of	 	.	Prove	that	 	contains	edges

	and	 	such	that	 	is	a	second-best
minimum	spanning	tree	of	 	.

c.	Let	 	be	a	spanning	tree	of	 	and,	for	any	two	vertices	 	,	let	
denote	an	edge	of	maximum	weight	on	the	unique	simple	path	between	 	and	 	in	 	.

Describe	an	 	-time	algorithm	that,	given	 	,	computes	 	for	all

	.

Search	from	each	vertex.

d.	Give	an	efficient	algorithm	to	compute	the	second-best	minimum	spanning	tree	of	
.
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Find	an	edge	 	with	weight	 	that	minimizes	 	.	The	time	is

	.

23-2	Minimum	spanning	tree	in	sparse	graphs

For	a	very	sparse	connected	graph	 	,	we	can	further	improve	upon	the

	running	time	of	Prim's	algorithm	with	Fibonacci	heaps	by
preprocessing	 	to	decrease	the	number	of	vertices	before	running	Prim's	algorithm.	In

particular,	we	choose,	for	each	vertex	 	,	the	minimum-weight	edge	 	incident	on

	,	and	we	put	 	into	the	minimum	spanning	tree	under	construction.	We	then
contract	all	chosen	edges	(see	Section	B.4).	Rather	than	contracting	these	edges	one
at	a	time,	we	first	identify	sets	of	vertices	that	are	united	into	the	same	new	vertex.
Then	we	create	the	graph	that	would	have	resulted	from	contracting	these	edges	one	at
a	time,	but	we	do	so	by	"renaming"	edges	according	to	the	sets	into	which	their
endpoints	were	placed.	Several	edges	from	the	original	graph	may	be	renamed	the
same	as	each	other.	In	such	a	case,	only	one	edge	results,	and	its	weight	is	the
minimum	of	the	weights	of	the	corresponding	original	edges.

Initially,	we	set	the	minimum	spanning	tree	 	being	constructed	to	be	empty,	and	for

each	edge	 	,	we	initialize	the	attributes	 	and

	.	We	use	the	orig	attribute	to	reference	the	edge	from	the	initial
graph	that	is	associated	with	an	edge	in	the	contracted	graph.	The	 	attribute	holds	the
weight	of	an	edge,	and	as	edges	are	contracted,	we	update	it	according	to	the	above
scheme	for	choosing	edge	weights.	The	procedure	MST-REDUCE	takes	inputs	 	and

	,	and	it	returns	a	contracted	graph	 	with	updated	attributes	 	and	 	.	The
procedure	also	accumulates	edges	of	 	into	the	minimum	spanning	tree	 	.
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MST-REDUCE(G,	T)

1		for	each	v	in	G.V

2							v.mark	=	FALSE

3							MAKE-SET(v)

4		for	each	u	in	G.V

5							if	u.mark	==	FALSE

6												choose	v	in	G.Adj[u]	such	that	(u,	v).c	is	minimized

7												UNION(u,	v)

8												T	=	T	[	f(u,	v).origg

9												u.mark	=	v.mark	=	TRUE

10		G'.V	=	{FIND-SET(v)	:	v	in	G.V}

11		G'.E	=	empty

12		for	each	(x,	y)	in	G.E

13							u	=	FIND-SET(x)

14							v	=	FIND-SET(y)

15							if	(u,	v)	not	in	G'.E

16												G'.E	=	G'.E	union	{(u,	v)}

17												(u,	v).orig'	=	(x,	y).orig

18												(u,	v).c'	=	(x,	y).c

19							else	if	(x,	y).c	<	(u,v).c'

20												(u,	v).orig'	=	(x,	y).orig

21												(u,	v).c'	=	(x,	y).c

22		construct	adjacency	lists	G'.Adj	for	G'

23		return	G'	and	T

a.	Let	 	be	the	set	of	edges	returned	by	MST-REDUCE,	and	let	 	be	the	minimum

spanning	tree	of	the	graph	 	formed	by	the	call	MST-PRIM	 	,	where	 	is

the	weight	attribute	on	the	edges	of	 	and	 	is	any	vertex	in	 	.	Prove	that

	is	a	minimum	spanning	tree	of	 	.

b.	Argue	that	 	.

c.	Show	how	to	implement	MST-REDUCE	so	that	it	runs	in	 	time.	(Hint:	Use
simple	data	structures.)

d.	Suppose	that	we	run	 	phases	of	MST-REDUCE,	using	the	output	 	produced	by
one	phase	as	the	input	 	to	the	next	phase	and	accumulating	edges	in	 	.	Argue	that

the	overall	running	time	of	the	 	phases	is	 	.

e.	Suppose	that	after	running	 	phases	of	MST-REDUCE,	as	in	part	(d),	we	run	Prim's

algorithm	by	calling	MST-PRIM	 	,	where	 	,	with	weight	attribute	 	,	is

returned	by	the	last	phase	and	 	is	any	vertex	in	 	.	Show	how	to	pick	 	so	that

the	overall	running	time	is	 	.	Argue	that	your	choice	of	 	minimizes	the
overall	asymptotic	running	time.

Problems

472



f.	For	what	values	of	 	(in	terms	of	 	)	does	Prim's	algorithm	with	preprocessing
asymptotically	beat	Prim's	algorithm	without	preprocessing?

23-3	Bottleneck	spanning	tree

A	bottleneck	spanning	tree	 	of	an	undirected	graph	 	is	a	spanning	tree	of	 	whose
largest	edge	weight	is	minimum	over	all	spanning	trees	of	 	.	We	say	that	the	value	of
the	bottleneck	spanning	tree	is	the	weight	of	the	maximum-weight	edge	in	 	.

a.	Argue	that	a	minimum	spanning	tree	is	a	bottleneck	spanning	tree.

Based	on	exercise	23.1-8,	all	MSTs	have	the	same	sorted	weight	list,	thus	they	have	the
same	bottleneck.

Part	(a)	shows	that	finding	a	bottleneck	spanning	tree	is	no	harder	than	finding	a
minimum	spanning	tree.	In	the	remaining	parts,	we	will	show	how	to	find	a	bottleneck
spanning	tree	in	linear	time.

b.	Give	a	linear-time	algorithm	that	given	a	graph	 	and	an	integer	 	,	determines
whether	the	value	of	the	bottleneck	spanning	tree	is	at	most	 	.

DFS	on	the	graph	with	the	edges	that	their	weights	are	less	or	equal	to	 	.

c.	Use	your	algorithm	for	part	(b)	as	a	subroutine	in	a	linear-time	algorithm	for	the
bottleneck-spanning-tree	problem.	(Hint:	You	may	want	to	use	a	subroutine	that
contracts	sets	of	edges,	as	in	the	MST-REDUCE	procedure	described	in	Problem	23-
2.)

Binary	search	for	 	.

23-4	Alternative	minimum-spanning-tree	algorithms

Problems
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In	this	problem,	we	give	pseudocode	for	three	different	algorithms.	Each	one	takes	a
connected	graph	and	a	weight	function	as	input	and	returns	a	set	of	edges	 	.	For
each	algorithm,	either	prove	that	 	is	a	minimum	spanning	tree	or	prove	that	 	is	not	a
minimum	spanning	tree.	Also	describe	the	most	efficient	implementation	of	each
algorithm,	whether	or	not	it	computes	a	minimum	spanning	tree.

a.

MAYBE-MST-A(G,	w)

1		sort	the	edges	into	nonincreasing	order	of	edge	weights	w

2		T	=	E

3		for	each	edge	e,	taken	in	nonincreasing	order	by	weight

4							if	T	-	{e}	is	a	connected	graph

5												T	=	T	-	{e}

6		return	T

It's	a	MST.

b.

MAYBE-MST-B(G,	w)

1		T	=	{}

2		for	each	edge	e,	taken	in	arbitrary	order

3							if	T	U	{e}	has	no	cycles

4												T	=	T	U	{e}

5		return	T

Not.

c.

MAYBE-MST-C(G,	w)

1		T	=	{}

2		for	each	edge	e,	taken	in	arbitrary	order

3							T	=	T	U	{e}

4							if	T	has	a	cycle	c

5												let	e'	be	a	maximum-weight	edge	on	c

6												T	=	T	-	{e}

7		return	T

It's	a	MST.

Problems
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24	Single-Source	Shortest	Paths
24.1	The	Bellman-Ford	algorithm
24.2	Single-source	shortest	paths	in	directed	acyclic	graphs
24.3	Dijkstra's	algorithm
24.4	Difference	constraints	and	shortest	paths
24.5	Proofs	of	shortest-paths	properties
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24	Single-Source	Shortest	Paths
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24.1	The	Bellman-Ford	algorithm

24.1-1

Run	the	Bellman-Ford	algorithm	on	the	directed	graph	of	Figure	24.4,	using	vertex	 	as
the	source.	In	each	pass,	relax	edges	in	the	same	order	as	in	the	figure,	and	show	the

	and	 	values	after	each	pass.	Now,	change	the	weight	of	edge	 	to	4	and	run
the	algorithm	again,	using	 	as	the	source.

\

2 4 6 9 0

NIL

\

0 0 2 7 -2

NIL

24.1-2

Prove	Corollary	24.3.

No	path	property.

24.1-3

Given	a	weighted,	directed	graph	 	with	no	negative-weight	cycles,	let	
be	the	maximum	over	all	vertices	 	of	the	minimum	number	of	edges	in	a	shortest
path	from	the	source	 	to	 	.	(Here,	the	shortest	path	is	by	weight,	not	the	number	of
edges.)	Suggest	a	simple	change	to	the	Bellman-Ford	algorithm	that	allows	it	to

terminate	in	 	passes,	even	if	 	is	not	known	in	advance.

Stop	when	no	vertex	is	relaxed	in	a	single	loop.

24.1-4

Modify	the	Bellman-Ford	algorithm	so	that	it	sets	 	to	 	for	all	vertices	 	for
which	there	is	a	negative-weight	cycle	on	some	path	from	the	source	to	 	.

24.1	The	Bellman-Ford	algorithm
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if	v.d	>	u.d	+	w(u,	v)

					v.d	=	-inf

24.1-5	

Let	 	be	a	weighted,	directed	graph	with	weight	function	 	.

Give	an	 	-time	algorithm	to	find,	for	each	vertex	 	,	the	value

	.

RELAX(u,	v,	w)

1	if	v.d	>	min(w(u,	v),	w(u,	v)	+	u.d)

2						v.d	>	min(w(u,	v),	w(u,	v)	+	u.d)

3						v.pi	=	u.pi

24.1-6	

Suppose	that	a	weighted,	directed	graph	 	has	a	negative-weight	cycle.
Give	an	efficient	algorithm	to	list	the	vertices	of	one	such	cycle.	Prove	that	your
algorithm	is	correct.

Based	on	exercise	24.1-4,	DFS	from	a	vertex	 	that	 	,	if	the	weight	sum	on	the
search	path	is	negative	and	the	next	vertex	is	BLACK,	then	the	search	path	forms	a
negative-weight	cycle.

24.1	The	Bellman-Ford	algorithm
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24.2	Single-source	shortest	paths	in	directed
acyclic	graphs

24.2-1

Run	DAG-SHORTEST-PATHS	on	the	directed	graph	of	Figure	24.5,	using	vertex	 	as
the	source.

\

0 5 3 10 7 5

NIL

24.2-2

Suppose	we	change	line	3	of	DAG-SHORTEST-PATHS	to	read

3	for	the	first	 	vertices,	taken	in	topologically	sorted	order

Show	that	the	procedure	would	remain	correct.

The	out-degree	of	the	last	vertex	is	0.

24.2-3

The	PERT	chart	formulation	given	above	is	somewhat	unnatural.	In	a	more	natural
structure,	vertices	would	represent	jobs	and	edges	would	represent	sequencing

constraints;	that	is,	edge	 	would	indicate	that	job	 	must	be	performed	before	job
	.	We	would	then	assign	weights	to	vertices,	not	edges.	Modify	the	DAG-SHORTEST-

PATHS	procedure	so	that	it	finds	a	longest	path	in	a	directed	acyclic	graph	with
weighted	vertices	in	linear	time.

	,	 	.

24.2-4

Give	an	efficient	algorithm	to	count	the	total	number	of	paths	in	a	directed	acyclic	graph.
Analyze	your	algorithm.

	,	 	.

24.2	Single-source	shortest	paths	in	directed	acyclic	graphs

478



Time:	 	.

24.2	Single-source	shortest	paths	in	directed	acyclic	graphs
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24.3	Dijkstra's	algorithm

24.3-1

Run	Dijkstra's	algorithm	on	the	directed	graph	of	Figure	24.2,	first	using	vertex	 	as	the
source	and	then	using	vertex	 	as	the	source.	In	the	style	of	Figure	24.6,	show	the	
and	 	values	and	the	vertices	in	set	 	after	each	iteration	of	the	while	loop.

24.3-2

Give	a	simple	example	of	a	directed	graph	with	negative-weight	edges	for	which
Dijkstra's	algorithm	produces	incorrect	answers.	Why	doesn't	the	proof	of	Theorem	24.6
go	through	when	negative-weight	edges	are	allowed?

24.3-3

Suppose	we	change	line	4	of	Dijkstra's	algorithm	to	the	following.

4	while	

This	change	causes	the	while	loop	to	execute	 	times	instead	of	 	times.	Is
this	proposed	algorithm	correct?

Correct.

24.3-4

Professor	Gaedel	has	written	a	program	that	he	claims	implements	Dijkstra's	algorithm.

The	program	produces	 	and	 	for	each	vertex	 	.	Give	an	 	-
time	algorithm	to	check	the	output	of	the	professor's	program.	It	should	determine
whether	the	 	and	 	attributes	match	those	of	some	shortest-paths	tree.	You	may
assume	that	all	edge	weights	are	nonnegative.

Relax	on	the	shortest	path	tree.

24.3-5

24.3	Dijkstra's	algorithm
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Professor	Newman	thinks	that	he	has	worked	out	a	simpler	proof	of	correctness	for
Dijkstra's	algorithm.	He	claims	that	Dijkstra's	algorithm	relaxes	the	edges	of	every
shortest	path	in	the	graph	in	the	order	in	which	they	appear	on	the	path,	and	therefore
the	path-relaxation	property	applies	to	every	vertex	reachable	from	the	source.	Show
that	the	professor	is	mistaken	by	constructing	a	directed	graph	for	which	Dijkstra's
algorithm	could	relax	the	edges	of	a	shortest	path	out	of	order.

24.3-6

We	are	given	a	directed	graph	 	on	which	each	edge	 	has	an

associated	value	 	,	which	is	a	real	number	in	the	range	 	that
represents	the	reliability	of	a	communication	channel	from	vertex	 	to	vertex	 	.	We

interpret	 	as	the	probability	that	the	channel	from	 	to	 	will	not	fail,	and	we
assume	that	these	probabilities	are	independent.	Give	an	efficient	algorithm	to	find	the
most	reliable	path	between	two	given	vertices.

	.

24.3-7

Let	 	be	a	weighted,	directed	graph	with	positive	weight	function

	for	some	positive	integer	 	,	and	assume	that	no	two
vertices	have	the	same	shortest-path	weights	from	source	vertex	 	.	Now	suppose	that

we	define	an	unweighted,	directed	graph	 	by	replacing	each

edge	 	with	 	unit-weight	edges	in	series.	How	many	vertices	does

	have?	Now	suppose	that	we	run	a	breadth-first	search	on	 	.	Show	that	the	order

in	which	the	breadth-first	search	of	 	colors	vertices	in	 	black	is	the	same	as	the
order	in	which	Dijkstra's	algorithm	extracts	the	vertices	of	 	from	the	priority	queue
when	it	runs	on	 	.

	.

24.3-8

24.3	Dijkstra's	algorithm
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Let	 	be	a	weighted,	directed	graph	with	nonnegative	weight	function

	for	some	nonnegative	integer	 	.	Modify	Dijkstra's

algorithm	to	compute	the	shortest	paths	from	a	given	source	vertex	s	in	
time.

Use	array	to	store	vertices.

24.3-9

Modify	your	algorithm	from	Exercise	24.3-8	to	run	in	 	time.	(Hint:

How	many	distinct	shortest-path	estimates	can	there	be	in	 	at	any	point	in
time?)

Heap.

24.3-10

Suppose	that	we	are	given	a	weighted,	directed	graph	 	in	which	edges
that	leave	the	source	vertex	 	may	have	negative	weights,	all	other	edge	weights	are
nonnegative,	and	there	are	no	negative-weight	cycles.	Argue	that	Dijkstra's	algorithm
correctly	finds	shortest	paths	from	 	in	this	graph.

24.3	Dijkstra's	algorithm
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24.4	Difference	constraints	and	shortest	paths

24.4-1

Find	a	feasible	solution	or	determine	that	no	feasible	solution	exists	for	the	following
system	of	difference	constraints:

24.4-2

Find	a	feasible	solution	or	determine	that	no	feasible	solution	exists	for	the	following
system	of	difference	constraints:

No	solution.

24.4-3

Can	any	shortest-path	weight	from	the	new	vertex	 	in	a	constraint	graph	be	positive?
Explain.

24.4-4

Express	the	single-pair	shortest-path	problem	as	a	linear	program.

24.4-5

Show	how	to	modify	the	Bellman-Ford	algorithm	slightly	so	that	when	we	use	it	to	solve
a	system	of	difference	constraints	with	m	inequalities	on	n	unknowns,	the	running	time

is	 	.

24.4-6

Suppose	that	in	addition	to	a	system	of	difference	constraints,	we	want	to	handle

equality	constraints	of	the	form	 	.	Show	how	to	adapt	the	Bellman-
Ford	algorithm	to	solve	this	variety	of	constraint	system.

24.4-7

Show	how	to	solve	a	system	of	difference	constraints	by	a	Bellman-Ford-like	algorithm
that	runs	on	a	constraint	graph	without	the	extra	vertex	 	.

24.4	Difference	constraints	and	shortest	paths
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24.4-8	

Let	 	be	a	system	of	 	difference	constraints	in	 	unknowns.	Show	that	the
Bellman-Ford	algorithm,	when	run	on	the	corresponding	constraint	graph,	maximizes

	subject	to	 	and	 	for	all	 	.

24.4-9	

Show	that	the	Bellman-Ford	algorithm,	when	run	on	the	constraint	graph	for	a	system

	of	difference	constraints,	minimizes	the	quantity	

subject	to	 	.	Explain	how	this	fact	might	come	in	handy	if	the	algorithm	is	used
to	schedule	construction	jobs.

24.4-10

Suppose	that	every	row	in	the	matrix	 	of	a	linear	program	 	corresponds	to	a

difference	constraint,	a	single-variable	constraint	of	the	form	 	,	or	a

singlevariable	constraint	of	the	form	 	.	Show	how	to	adapt	the	Bellman-Ford
algorithm	to	solve	this	variety	of	constraint	system.

24.4-11

Give	an	efficient	algorithm	to	solve	a	system	 	of	difference	constraints	when	all
of	the	elements	of	b	are	real-valued	and	all	of	the	unknowns	 	must	be	integers.

24.4-12	

Give	an	efficient	algorithm	to	solve	a	system	 	of	difference	constraints	when	all
of	the	elements	of	b	are	real-valued	and	a	specified	subset	of	some,	but	not	necessarily
all,	of	the	unknowns	 	must	be	integers.

24.4	Difference	constraints	and	shortest	paths
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24.5	Proofs	of	shortest-paths	properties

24.5-1

Give	two	shortest-paths	trees	for	the	directed	graph	of	Figure	24.2	(on	page	648)	other
than	the	two	shown.

24.5-2

Give	an	example	of	a	weighted,	directed	graph	 	with	weight	function
	and	source	vertex	 	such	that	 	satisfies	the	following	property:	For

every	edge	 	,	there	is	a	shortest-paths	tree	rooted	at	 	that	contains	

and	another	shortest-paths	tree	rooted	at	 	that	does	not	contain	 	.

24.5-3

Embellish	the	proof	of	Lemma	24.10	to	handle	cases	in	which	shortest-path	weights	are
	or	 	.

24.5-4

Let	 	be	a	weighted,	directed	graph	with	source	vertex	 	,	and	let	 	be

initialized	by	INITIALIZE-SINGLE-SOURCE	 	.	Prove	that	if	a	sequence	of
relaxation	steps	sets	 	to	a	non-NIL	value,	then	 	contains	a	negative-weight	cycle.

24.5-5

Let	 	be	a	weighted,	directed	graph	with	no	negative-weight	edges.	Let
	be	the	source	vertex,	and	suppose	that	we	allow	 	to	be	the	predecessor	of

	on	any	shortest	path	to	 	from	source	 	if	 	is	reachable	from	 	,	and
NIL	otherwise.	Give	an	example	of	such	a	graph	 	and	an	assignment	of	 	values	that

produces	a	cycle	in	 	.	(By	Lemma	24.16,	such	an	assignment	cannot	be	produced
by	a	sequence	of	relaxation	steps.)

24.5-6

24.5	Proofs	of	shortest-paths	properties

485



Let	 	be	a	weighted,	directed	graph	with	weight	function	 	and
no	negative-weight	cycles.	Let	 	be	the	source	vertex,	and	let	 	be	initialized	by

INITIALIZE-SINGLE-SOURCE	 	.	Prove	that	for	every	vertex	 	,	there

exists	a	path	from	 	to	 	in	 	and	that	this	property	is	maintained	as	an	invariant	over
any	sequence	of	relaxations.

24.5-7

Let	 	be	a	weighted,	directed	graph	that	contains	no	negative-weight
cycles.	Let	 	be	the	source	vertex,	and	let	 	be	initialized	by	INITIALIZESINGLE-

SOURCE	 	.	Prove	that	there	exists	a	sequence	of	 	relaxation	steps	that

produces	 	for	all	 	.

24.5-8

Let	 	be	an	arbitrary	weighted,	directed	graph	with	a	negative-weight	cycle	reachable
from	the	source	vertex	 	.	Show	how	to	construct	an	infinite	sequence	of	relaxations	of
the	edges	of	 	such	that	every	relaxation	causes	a	shortest-path	estimate	to	change.

24.5	Proofs	of	shortest-paths	properties
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Problems

24-1	Yen's	improvement	to	Bellman-Ford

24-2	Nesting	boxes

24-3	Arbitrage

24-4	Gabow's	scaling	algorithm	for	single-source	shortest
paths

24-5	Karp's	minimum	mean-weight	cycle	algorithm

24-6	Bitonic	shortest	paths

Problems
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25	All-Pairs	Shortest	Paths
25.1	Shortest	paths	and	matrix	multiplication
25.2	The	Floyd-Warshall	algorithm
25.3	Johnson's	algorithm	for	sparse	graphs
Problems

25	All-Pairs	Shortest	Paths
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25.1	Shortest	paths	and	matrix	multiplication

25.1-1

Run	SLOW-ALL-PAIRS-SHORTEST-PATHS	on	the	weighted,	directed	graph	of	Figure
25.2,	showing	the	matrices	that	result	for	each	iteration	of	the	loop.	Then	do	the	same
for	FASTER-ALL-PAIRS-SHORTEST-PATHS.

Initial:

Slow:

	:

	:

	:

25.1	Shortest	paths	and	matrix	multiplication
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	:

Fast:

	:

	:

	:

25.1	Shortest	paths	and	matrix	multiplication
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25.1-2

Why	do	we	require	that	 	for	all	 	?

To	simplify	(25.2).

25.1-3

What	does	the	matrix

used	in	the	shortest-paths	algorithms	correspond	to	in	regular	matrix	multiplication?

Unit.

25.1-4

Show	that	matrix	multiplication	defined	by	EXTEND-SHORTEST-PATHS	is	associative.

25.1-5

Show	how	to	express	the	single-source	shortest-paths	problem	as	a	product	of
matrices	and	a	vector.	Describe	how	evaluating	this	product	corresponds	to	a	Bellman-
Ford-like	algorithm	(see	Section	24.1).

A	vector	filled	with	0	except	that	the	source	is	1.

25.1-6

25.1	Shortest	paths	and	matrix	multiplication
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Suppose	we	also	wish	to	compute	the	vertices	on	shortest	paths	in	the	algorithms	of

this	section.	Show	how	to	compute	the	predecessor	matrix	 	from	the	completed

matrix	 	of	shortest-path	weights	in	 	time.

If	 	,	then	 	.

25.1-7

We	can	also	compute	the	vertices	on	shortest	paths	as	we	compute	the	shortestpath

weights.	Define	 	as	the	predecessor	of	vertex	 	on	any	minimum-weight	path	from

	to	 	that	contains	at	most	 	edges.	Modify	the	EXTEND-SHORTESTPATHS	and
SLOW-ALL-PAIRS-SHORTEST-PATHS	procedures	to	compute	the	matrices

	as	the	matrices	 	are	computed.

If	 	,	then	 	.

25.1-8

The	FASTER-ALL-PAIRS-SHORTEST-PATHS	procedure,	as	written,	requires	us	to

store	 	matrices,	each	with	 	elements,	for	a	total	space	requirement	of

	.	Modify	the	procedure	to	require	only	 	space	by	using	only	two
	matrices.

def	fast_all_pairs_shortest_paths(w):

				n	=	len(w)

				m	=	1

				while	m	<	n	-	1:

								w	=	extend_shortest_paths(w,	w)

								m	*=	2

				return	w

25.1-9

Modify	FASTER-ALL-PAIRS-SHORTEST-PATHS	so	that	it	can	determine	whether	the
graph	contains	a	negative-weight	cycle.

If	 	,	then	there	is	a	negative-weight	cycle.

25.1-10

25.1	Shortest	paths	and	matrix	multiplication
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Give	an	efficient	algorithm	to	find	the	length	(number	of	edges)	of	a	minimum-length
negative-weight	cycle	in	a	graph.

If	 	and	 	,	then	the	minimum-length	is	 	.

25.1	Shortest	paths	and	matrix	multiplication
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25.2	The	Floyd-Warshall	algorithm

25.2-1

Run	the	Floyd-Warshall	algorithm	on	the	weighted,	directed	graph	of	Figure	25.2.	Show

the	matrix	 	that	results	for	each	iteration	of	the	outer	loop.

	:

	:

	:

	:

25.2	The	Floyd-Warshall	algorithm

494



	:

	:

25.2-2

Show	how	to	compute	the	transitive	closure	using	the	technique	of	Section	25.1.

25.2-3

Modify	the	FLOYD-WARSHALL	procedure	to	compute	the	 	matrices	according	to
equations	(25.6)	and	(25.7).	Prove	rigorously	that	for	all	 	,	the	predecessor

subgraph	 	is	a	shortest-paths	tree	with	root	 	.

25.2-4

25.2	The	Floyd-Warshall	algorithm
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As	it	appears	above,	the	Floyd-Warshall	algorithm	requires	 	space,	since	we

compute	 	for	 	.	Show	that	the	following	procedure,	which

simply	drops	all	the	superscripts,	is	correct,	and	thus	only	 	space	is	required.

25.2-5

Suppose	that	we	modify	the	way	in	which	equation	(25.7)	handles	equality:

Is	this	alternative	definition	of	the	predecessor	matrix	 	correct?

Correct.

25.2-6

How	can	we	use	the	output	of	the	Floyd-Warshall	algorithm	to	detect	the	presence	of	a
negative-weight	cycle?

If	 	,	then	the	graph	contains	negative-weight	cycle.

25.2-7

Another	way	to	reconstruct	shortest	paths	in	the	Floyd-Warshall	algorithm	uses	values

	for	 	,	where	 	is	the	highest-numbered	intermediate

vertex	of	a	shortest	path	from	 	to	 	in	which	all	intermediate	vertices	are	in	the	set

	.	Give	a	recursive	formulation	for	 	,	modify	the	FLOYD-WARSHALL

procedure	to	compute	the	 	values,	and	rewrite	the	PRINT-ALLPAIRS-	SHORTEST-

PATH	procedure	to	take	the	matrix	 	as	an	input.	How	is	the	matrix	 	like
the	 	table	in	the	matrix-chain	multiplication	problem	of	Section	15.2?

25.2-8

25.2	The	Floyd-Warshall	algorithm
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Give	an	 	-time	algorithm	for	computing	the	transitive	closure	of	a	directed

graph	 	.

DFS	from	each	vertex.

25.2-9

Suppose	that	we	can	compute	the	transitive	closure	of	a	directed	acyclic	graph	in

	time,	where	 	is	a	monotonically	increasing	function	of	 	and	 	.

Show	that	the	time	to	compute	the	transitive	closure	 	of	a	general

directed	graph	 	is	then	 	.

All	the	pairs	of	vertices	in	one	SCC	are	connected,	and	the	SCCs	forms	a	directed	acyclic
graph.

25.2	The	Floyd-Warshall	algorithm
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25.3	Johnson's	algorithm	for	sparse	graphs

25.3-1

Use	Johnson's	algorithm	to	find	the	shortest	paths	between	all	pairs	of	vertices	in	the
graph	of	Figure	25.2.	Show	the	values	of	 	and	 	computed	by	the	algorithm.

25.3-2

What	is	the	purpose	of	adding	the	new	vertex	 	to	 	,	yielding	 	?

To	reach	all	the	vertices.

25.3-3

Suppose	that	 	for	all	edges	 	.	What	is	the	relationship
between	the	weight	functions	 	and	 	?

	,	 	.

25.3-4
Professor	Greenstreet	claims	that	there	is	a	simpler	way	to	reweight	edges	than	the

method	used	in	Johnson's	algorithm.	Letting	 	,	just

define	 	for	all	edges	 	.	What	is	wrong	with	the
professor's	method	of	reweighting?

	.

25.3	Johnson's	algorithm	for	sparse	graphs
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25.3-5

Suppose	that	we	run	Johnson's	algorithm	on	a	directed	graph	 	with	weight	function	

.	Show	that	if	 	contains	a	0-weight	cycle	 	,	then	 	for	every	edge	
in	 	.

	,	if	 	,	then	we	have

	,

which	is	impossible,	thus	 	,

	.

25.3-6

Professor	Michener	claims	that	there	is	no	need	to	create	a	new	source	vertex	in	line	1

of	JOHNSON.	He	claims	that	instead	we	can	just	use	 	and	let	 	be	any	vertex.
Give	an	example	of	a	weighted,	directed	graph	 	for	which	incorporating	the
professor's	idea	into	JOHNSON	causes	incorrect	answers.	Then	show	that	if	 	is
strongly	connected	(every	vertex	is	reachable	from	every	other	vertex),	the	results
returned	by	JOHNSON	with	the	professor's	modification	are	correct.

	.

25.3	Johnson's	algorithm	for	sparse	graphs
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Problems

25-1	Transitive	closure	of	a	dynamic	graph

Suppose	that	we	wish	to	maintain	the	transitive	closure	of	a	directed	graph

	as	we	insert	edges	into	 	.	That	is,	after	each	edge	has	been	inserted,
we	want	to	update	the	transitive	closure	of	the	edges	inserted	so	far.	Assume	that	the
graph	 	has	no	edges	initially	and	that	we	represent	the	transitive	closure	as	a	boolean
matrix.

a.	Show	how	to	update	the	transitive	closure	 	of	a	graph

	in	 	time	when	a	new	edge	is	added	to	 	.

Suppose	the	inverted	edge	is	 	,	then	if	 	is	true	and	 	is	true,	then	 	is
true.

b.	Give	an	example	of	a	graph	 	and	an	edge	 	such	that	 	time	is	required	to
update	the	transitive	closure	after	the	insertion	of	 	into	 	,	no	matter	what	algorithm	is
used.

Two	connected	components.

c.	Describe	an	efficient	algorithm	for	updating	the	transitive	closure	as	edges	are
inserted	into	the	graph.	For	any	sequence	of	 	insertions,	your	algorithm	should	run	in

total	time	 	,	where	 	is	the	time	to	update	the	transitive	closure
upon	inserting	the	 	th	edge.	Prove	that	your	algorithm	attains	this	time	bound.

If	 	is	true,	 	is	not	true	and	 	is	true,	then	 	is	true.

25-2	Shortest	paths	in	 	-dense	graphs

Problems
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A	graph	 	is	 	-dense	if	 	for	some	constant	 	in	the

range	 	.	By	using	 	-ary	min-heaps	(see	Problem	6-2)	in	shortest-paths
algorithms	on	 	-dense	graphs,	we	can	match	the	running	times	of	Fibonacci-heap-
based	algorithms	without	using	as	complicated	a	data	structure.

a.	What	are	the	asymptotic	running	times	for	INSERT,	EXTRACT-MIN,	and
DECREASE-KEY,	as	a	function	of	 	and	the	number	 	of	elements	in	a	 	-ary	min-

heap?	What	are	these	running	times	if	we	choose	 	for	some	constant

	?	Compare	these	running	times	to	the	amortized	costs	of	these	operations
for	a	Fibonacci	heap.

INSERT:	 	.

EXTRACT-MIN:	 	.

DECREASE-KEY:	 	.

b.	Show	how	to	compute	shortest	paths	from	a	single	source	on	an	 	-dense	directed

graph	 	with	no	negative-weight	edges	in	 	time.	(Hint:	Pick	 	as	a
function	of	 	.)

Dijkstra,	 	,	if	 	,	then

c.	Show	how	to	solve	the	all-pairs	shortest-paths	problem	on	an	 	-dense	directed

graph	 	with	no	negative-weight	edges	in	 	time.

Run	 	times	Dijkstra,	since	the	algorithm	is	 	based	on	b,	the	total	time	is	 	.

d.	Show	how	to	solve	the	all-pairs	shortest-paths	problem	in	 	time	on	an	 	-

dense	directed	graph	 	that	may	have	negative-weight	edges	but	has	no
negative-weight	cycles.

Johnson's	reweight	is	 	.

Problems
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26	Maximum	Flow
26.1	Flow	networks
26.2	The	Ford-Fulkerson	method
26.3	Maximum	bipartite	matching
26.4	Push-relabel	algorithms
26.5	The	relabel-to-front	algorithm
Problems

26	Maximum	Flow
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26.1	Flow	networks

26.1-1

Show	that	splitting	an	edge	in	a	flow	network	yields	an	equivalent	network.	More

formally,	suppose	that	flow	network	 	contains	edge	 	,	and	we	create	a	new	flow

network	 	by	creating	a	new	vertex	 	and	replacing	 	by	new	edges	 	and

	with	 	.	Show	that	a	maximum	flow	in	 	has	the
same	value	as	a	maximum	flow	in	 	.

	.

26.1-2

Extend	the	flow	properties	and	definitions	to	the	multiple-source,	multiple-sink	problem.
Show	that	any	flow	in	a	multiple-source,	multiple-sink	flow	network	corresponds	to	a
flow	of	identical	value	in	the	single-source,	single-sink	network	obtained	by	adding	a
supersource	and	a	supersink,	and	vice	versa.

Capacity	constraint:	for	all	 	,	we	require	 	.

Flow	conservation:	for	all	 	,	we	require

	.

26.1-3

Suppose	that	a	flow	network	 	violates	the	assumption	that	the	network
contains	a	path	 	for	all	vertices	 	.	Let	 	be	a	vertex	for	which	there

is	no	path	 	.	Show	that	there	must	exist	a	maximum	flow	 	in	 	such	that

	for	all	vertices	 	.

Cannot	flow	in	or	flow	out.

26.1-4

26.1	Flow	networks
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Let	 	be	a	flow	in	a	network,	and	let	 	be	a	real	number.	The	scalar	flow	product,

denoted	 	,	is	a	function	from	 	to	 	defined	by

	.

Prove	that	the	flows	in	a	network	form	a	convex	set.	That	is,	show	that	if	 	and	

are	flows,	then	so	is	 	for	all	 	in	the	range	 	.

26.1-5

State	the	maximum-flow	problem	as	a	linear-programming	problem.

26.1-6

Professor	Adam	has	two	children	who,	unfortunately,	dislike	each	other.	The	problem	is
so	severe	that	not	only	do	they	refuse	to	walk	to	school	together,	but	in	fact	each	one
refuses	to	walk	on	any	block	that	the	other	child	has	stepped	on	that	day.	The	children
have	no	problem	with	their	paths	crossing	at	a	corner.	Fortunately	both	the	professor's
house	and	the	school	are	on	corners,	but	beyond	that	he	is	not	sure	if	it	is	going	to	be
possible	to	send	both	of	his	children	to	the	same	school.	The	professor	has	a	map	of
his	town.	Show	how	to	formulate	the	problem	of	determining	whether	both	his	children
can	go	to	the	same	school	as	a	maximum-flow	problem.

The	capacity	of	each	path	is	1,	the	maximum-flow	should	be	greater	than	1.

26.1-7

Suppose	that,	in	addition	to	edge	capacities,	a	flow	network	has	vertex	capacities.

That	is	each	vertex	 	has	a	limit	 	on	how	much	flow	can	pass	though	 	.	Show	how

to	transform	a	flow	network	 	with	vertex	capacities	into	an	equivalent	flow

network	 	without	vertex	capacities,	such	that	a	maximum	flow	in	

has	the	same	value	as	a	maximum	flow	in	 	.	How	many	vertices	and	edges	does	
have?

26.1	Flow	networks
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For	each	vertex	 	,	transform	it	to	an	edge	 	with	capacity	 	.	 	has	 	vertices

and	 	edges.

26.1	Flow	networks
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26.2	The	Ford-Fulkerson	method

26.2-1

Prove	that	the	summations	in	equation	(26.6)	equal	the	summations	in	equation	(26.7).

	,	 	.

26.2-2

In	Figure	26.1(b),	what	is	the	flow	across	the	cut	 	?	What	is
the	capacity	of	this	cut?

.

.

26.2-3

Show	the	execution	of	the	Edmonds-Karp	algorithm	on	the	flow	network	of	Figure
26.1(a).

26.2-4

In	the	example	of	Figure	26.6,	what	is	the	minimum	cut	corresponding	to	the	maximum
flow	shown?	Of	the	augmenting	paths	appearing	in	the	example,	which	one	cancels
flow?

26.2-5

Recall	that	the	construction	in	Section	26.1	that	converts	a	flow	network	with	multiple
sources	and	sinks	into	a	single-source,	single-sink	network	adds	edges	with	infinite
capacity.	Prove	that	any	flow	in	the	resulting	network	has	a	finite	value	if	the	edges	of
the	original	network	with	multiple	sources	and	sinks	have	finite	capacity.

Flow	in	equals	flow	out.

26.2-6

26.2	The	Ford-Fulkerson	method
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Suppose	that	each	source	 	in	a	flow	network	with	multiple	sources	and	sinks

produces	exactly	 	units	of	flow,	so	that	 	.	Suppose	also	that

each	sink	 	consumes	exactly	 	units,	so	that	 	,	where

	.	Show	how	to	convert	the	problem	of	finding	a	flow	 	that	obeys
these	additional	constraints	into	the	problem	of	finding	a	maximum	flow	in	a	single-
source,	single-sink	flow	network.

	,	 	.

26.2-7

Prove	Lemma	26.2.

26.2-8

Suppose	that	we	redefine	the	residual	network	to	disallow	edges	into	 	.	Argue	that	the
procedure	FORD-FULKERSON	still	correctly	computes	a	maximum	flow.

Correct.

26.2-9

Suppose	that	both	 	and	 	are	flows	in	a	network	 	and	we	compute	flow	 	.
Does	the	augmented	flow	satisfy	the	flow	conservation	property?	Does	it	satisfy	the
capacity	constraint?

It	satisfies	the	flow	conservation	property	and	doesn't	satisfy	the	capacity	constraint.

26.2-10

Show	how	to	find	a	maximum	flow	in	a	network	 	by	a	sequence	of	at

most	 	augmenting	paths.	(Hint:	Determine	the	paths	after	finding	the	maximum
flow.)

Find	the	minimum	cut.

26.2-11

26.2	The	Ford-Fulkerson	method
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The	edge	connectivity	of	an	undirected	graph	is	the	minimum	number	 	of	edges	that
must	be	removed	to	disconnect	the	graph.	For	example,	the	edge	connectivity	of	a	tree
is	1,	and	the	edge	connectivity	of	a	cyclic	chain	of	vertices	is	2.	Show	how	to	determine

the	edge	connectivity	of	an	undirected	graph	 	by	running	a	maximum-flow

algorithm	on	at	most	 	flow	networks,	each	having	 	vertices	and	
edges.

Use	each	 	as	the	source,	find	the	minimum	minimum	cut.

26.2-12

Suppose	that	you	are	given	a	flow	network	 	,	and	 	has	edges	entering	the	source	

.	Let	 	be	a	flow	in	 	in	which	one	of	the	edges	 	entering	the	source	has

	.	Prove	that	there	must	exist	another	flow	 	with	 	such

that	 	.	Give	an	 	-time	algorithm	to	compute	 	,	given	 	,	and
assuming	that	all	edge	capacities	are	integers.

26.2-13

Suppose	that	you	wish	to	find,	among	all	minimum	cuts	in	a	flow	network	 	with
integral	capacities,	one	that	contains	the	smallest	number	of	edges.	Show	how	to

modify	the	capacities	of	 	to	create	a	new	flow	network	 	in	which	any	minimum	cut

in	 	is	a	minimum	cut	with	the	smallest	number	of	edges	in	 	.

26.2	The	Ford-Fulkerson	method
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26.3	Maximum	bipartite	matching

26.3-1

Run	the	Ford-Fulkerson	algorithm	on	the	flow	network	in	Figure	26.8(c)	and	show	the
residual	network	after	each	flow	augmentation.	Number	the	vertices	in	 	top	to	bottom
from	1	to	5	and	in	 	top	to	bottom	from	6	to	9.	For	each	iteration,	pick	the	augmenting
path	that	is	lexicographically	smallest.

26.3-2

Prove	Theorem	26.10.

26.3-3

Let	 	be	a	bipartite	graph	with	vertex	partition	 	,	and	let	
be	its	corresponding	flow	network.	Give	a	good	upper	bound	on	the	length	of	any

augmenting	path	found	in	 	during	the	execution	of	FORD-FULKERSON.

26.3-4	

A	perfect	matching	is	a	matching	in	which	every	vertex	is	matched.	Let	

be	an	undirected	bipartite	graph	with	vertex	partition	 	,	where	 	.

For	any	 	,	define	the	neighborhood	of	 	as

	,

that	is,	the	set	of	vertices	adjacent	to	some	member	of	 	.	Prove	Hall's	theorem:	there

exists	a	perfect	matching	in	 	if	and	only	if	 	for	every	subset	 	.

26.3-5	

We	say	that	a	bipartite	graph	 	,	where	 	,	is	d-regular	if
every	vertex	 	has	degree	exactly	 	.	Every	 	-regular	bipartite	graph	has

	.	Prove	that	every	 	-regular	bipartite	graph	has	a	matching	of	cardinality

	by	arguing	that	a	minimum	cut	of	the	corresponding	flow	network	has	capacity	 	.

26.3	Maximum	bipartite	matching
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26.4	Push-relabel	algorithms

26.4-1

Prove	that,	after	the	procedure	INITIALIZE-PREFLOW	 	terminates,	we	have

	,	where	 	is	a	maximum	flow	for	 	.

26.4-2

Show	how	to	implement	the	generic	push-relabel	algorithm	using	 	time	per

relabel	operation,	 	time	per	push,	and	 	time	to	select	an	applicable

operation,	for	a	total	time	of	 	.

26.4-3

Prove	that	the	generic	push-relabel	algorithm	spends	a	total	of	only	 	time	in

performing	all	the	 	relabel	operations.

26.4-4

Suppose	that	we	have	found	a	maximum	flow	in	a	flow	network	 	using	a
push-relabel	algorithm.	Give	a	fast	algorithm	to	find	a	minimum	cut	in	 	.

26.4-5

Give	an	efficient	push-relabel	algorithm	to	find	a	maximum	matching	in	a	bipartite
graph.	Analyze	your	algorithm.

26.4-6

Suppose	that	all	edge	capacities	in	a	flow	network	 	are	in	the	set

	.	Analyze	the	running	time	of	the	generic	push-relabel	algorithm	in

terms	of	 	,	 	,	and	 	.	(Hint:	How	many	times	can	each	edge	support	a
nonsaturating	push	before	it	becomes	saturated?)

26.4	Push-relabel	algorithms
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26.4-7

Show	that	we	could	change	line	6	of	INITIALIZE-PREFLOW	to

	6	s.h	=	|G.V|	-	2	

without	affecting	the	correctness	or	asymptotic	performance	of	the	generic	pushrelabel
algorithm.

26.4-8

Let	 	be	the	distance	(number	of	edges)	from	 	to	 	in	the	residual	network

	.	Show	that	the	GENERIC-PUSH-RELABEL	procedure	maintains	the	properties

that	 	implies	 	and	that	 	implies

	.

26.4-9	

As	in	the	previous	exercise,	let	 	be	the	distance	from	 	to	 	in	the	residual

network	 	.	Show	how	to	modify	the	generic	push-relabel	algorithm	to	maintain	the

property	that	 	implies	 	and	that	 	implies

	.	The	total	time	that	your	implementation	dedicates	to

maintaining	this	property	should	be	 	.

26.4-10

Show	that	the	number	of	nonsaturating	pushes	executed	by	the	GENERIC-PUSH-

RELABEL	procedure	on	a	flow	network	 	is	at	most	 	for

	.

26.4	Push-relabel	algorithms
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26.5	The	relabel-to-front	algorithm

26.5-1

Illustrate	the	execution	of	RELABEL-TO-FRONT	in	the	manner	of	Figure	26.10	for	the
flow	network	in	Figure	26.1(a).	Assume	that	the	initial	ordering	of	vertices	in	 	is

	and	that	the	neighbor	lists	are

	,	 	,	 	,

	,

26.5-2	

We	would	like	to	implement	a	push-relabel	algorithm	in	which	we	maintain	a	firstin,	first-
out	queue	of	overflowing	vertices.	The	algorithm	repeatedly	discharges	the	vertex	at	the
head	of	the	queue,	and	any	vertices	that	were	not	overflowing	before	the	discharge	but
are	overflowing	afterward	are	placed	at	the	end	of	the	queue.	After	the	vertex	at	the
head	of	the	queue	is	discharged,	it	is	removed.	When	the	queue	is	empty,	the	algorithm
terminates.	Show	how	to	implement	this	algorithm	to	compute	a	maximum	flow	in

	time.

26.5-3

Show	that	the	generic	algorithm	still	works	if	RELABEL	updates	 	by	simply

computing	 	.	How	would	this	change	affect	the	analysis	of	RELABEL-
TO-FRONT?

26.5-4	

Show	that	if	we	always	discharge	a	highest	overflowing	vertex,	we	can	make	the	push-

relabel	method	run	in	 	time.

26.5-5

26.5	The	relabel-to-front	algorithm
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Suppose	that	at	some	point	in	the	execution	of	a	push-relabel	algorithm,	there	exists	an

integer	 	for	which	no	vertex	has	 	.	Show	that	all	vertices
with	 	are	on	the	source	side	of	a	minimum	cut.	If	such	a	 	exists,	the	gap

heuristic	updates	every	vertex	 	for	which	 	,	to	set

	.	Show	that	the	resulting	attribute	 	is	a	height	function.
(The	gap	heuristic	is	crucial	in	making	implementations	of	the	push-relabel	method
perform	well	in	practice.)

26.5	The	relabel-to-front	algorithm
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Problems

26-1	Escape	problem

26-2	Minimum	path	cover

26-3	Algorithmic	consulting

26-4	Updating	maximum	flow

26-5	Maximum	flow	by	scaling

26-6	The	Hopcroft-Karp	bipartite	matching	algorithm

Problems
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27	Multithreaded	Algorithms
27.1	The	basics	of	dynamic	multithreading
27.2	Multithreaded	matrix	multiplication
27.3	Multithreaded	merge	sort
Problems

27	Multithreaded	Algorithms
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27.1	The	basics	of	dynamic	multithreading

27.1-1

Suppose	that	we	spawn	P-FIB	 	in	line	4	of	P-FIB,	rather	than	calling	it	as	is
done	in	the	code.	What	is	the	impact	on	the	asymptotic	work,	span,	and	parallelism?

No	change.

27.1-2

Draw	the	computation	dag	that	results	from	executing	P-FIB(5).	Assuming	that	each
strand	in	the	computation	takes	unit	time,	what	are	the	work,	span,	and	parallelism	of
the	computation?	Show	how	to	schedule	the	dag	on	3	processors	using	greedy
scheduling	by	labeling	each	strand	with	the	time	step	in	which	it	is	executed.

Work:	 	.

Span:	 	.

27.1	The	basics	of	dynamic	multithreading
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Parallelism:	 	.

27.1-3

Prove	that	a	greedy	scheduler	achieves	the	following	time	bound,	which	is	slightly
stronger	than	the	bound	proven	in	Theorem	27.1:

	.

	is	the	number	of	strands	that	are	not	belong	to	the	longest	path.

27.1-4

Construct	a	computation	dag	for	which	one	execution	of	a	greedy	scheduler	can	take
nearly	twice	the	time	of	another	execution	of	a	greedy	scheduler	on	the	same	number
of	processors.	Describe	how	the	two	executions	would	proceed.

The	critical	path	is	twice	the	length	of	the	other	path.

27.1-5

Professor	Karan	measures	her	deterministic	multithreaded	algorithm	on	 	,	 	,	and	
processors	of	an	ideal	parallel	computer	using	a	greedy	scheduler.	She	claims	that	the

three	runs	yielded	 	seconds,	 	seconds,	and	 	seconds.
Argue	that	the	professor	is	either	lying	or	incompetent.	(Hint:	Use	the	work	law	(27.2),
the	span	law	(27.3),	and	inequality	(27.5)	from	Exercise	27.1-3.)

Based	on	span	law:

Based	on	inequality	(27.5):

	,	 	,	which	contradicts	the	span	law.

27.1-6

Give	a	multithreaded	algorithm	to	multiply	an	 	matrix	by	an	 	-vector	that

achieves	 	parallelism	while	maintaining	 	work.

27.1	The	basics	of	dynamic	multithreading
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VEC-TIMES-VEC(a,	b,	l,	r)

1		if	l	==	r

2						return	a[l]	*	b[r]

2		m	=	floor((l	+	r)	/	2)

3		spawn	sum_l	=	VEC-TIMES-VEC(a,	b,	l,	m)

4		spawn	sum_r	=	VEC-TIMES-VEC(a,	b,	m	+	1,	r)

5		sync

6		return	sum_l	+	sum_r

The	multiply	of	two	vectors	is	thus	 	,	there	are	 	vectors	to	multiply	simultaneously,

and	the	outer	parallel	for	is	optimized	to	 	,	therefore

	,	since	 	,	then	the	parallelism

	.

27.1-7

Consider	the	following	multithreaded	pseudocode	for	transposing	an	 	matrix	
in	place:

P-TRANSPOSE(A)

1		n	=	A.rows

2		parallel	for	j	=	2	to	n

3						parallel	for	i	=	1	to	j	-	1

4										exchange	a_ij	with	a_ji

Analyze	the	work,	span,	and	parallelism	of	this	algorithm.

Work:	 	.

Span:	 	.

Parallelism:	 	.

27.1-8

Suppose	that	we	replace	theparallel	for	loop	in	line	3	of	P-TRANSPOSE	(see	Exercise
27.1-7)	with	an	ordinary	for	loop.	Analyze	the	work,	span,	and	parallelism	of	the
resulting	algorithm.

Work:	 	.

Span:	 	.

Parallelism:	 	.

27.1	The	basics	of	dynamic	multithreading
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27.1-9

For	how	many	processors	do	the	two	versions	of	the	chess	programs	run	equally	fast,

assuming	that	 	?

27.1	The	basics	of	dynamic	multithreading
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27.2	Multithreaded	matrix	multiplication

27.2-1

Draw	the	computation	dag	for	computing	P-SQUARE-MATRIX-MULTIPLY	on	
matrices,	labeling	how	the	vertices	in	your	diagram	correspond	to	strands	in	the
execution	of	the	algorithm.	Use	the	convention	that	spawn	and	call	edges	point
downward,	continuation	edges	point	horizontally	to	the	right,	and	return	edges	point
upward.	Assuming	that	each	strand	takes	unit	time,	analyze	the	work,	span,	and
parallelism	of	this	computation.

27.2-2

Repeat	Exercise	27.2-1	for	P-MATRIX-MULTIPLY-RECURSIVE.

27.2-3

Give	pseudocode	for	a	multithreaded	algorithm	that	multiplies	two	 	matrices	with

work	 	but	span	only	 	.	Analyze	your	algorithm.

Based	on	exercise	27.1-6,	the	product	of	two	vectors	is	 	,	thus

	.

27.2-4

Give	pseudocode	for	an	efficient	multithreaded	algorithm	that	multiplies	a	 	matrix
by	a	 	matrix.	Your	algorithm	should	be	highly	parallel	even	if	any	of	 	,	 	,	and	
are	1.	Analyze	your	algorithm.

27.2-5

Give	pseudocode	for	an	efficient	multithreaded	algorithm	that	transposes	an	
matrix	in	place	by	using	divide-and-conquer	to	divide	the	matrix	recursively	into	four

	submatrices.	Analyze	your	algorithm.

27.2	Multithreaded	matrix	multiplication
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	,	 	,	 	,

	.

27.2-6

Give	pseudocode	for	an	efficient	multithreaded	implementation	of	the	Floyd-Warshall
algorithm	(see	Section	25.2),	which	computes	shortest	paths	between	all	pairs	of
vertices	in	an	edge-weighted	graph.	Analyze	your	algorithm.

	and	 	can	be	paralleled,	 	.

27.2	Multithreaded	matrix	multiplication
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27.3	Multithreaded	merge	sort

27.3-1

Explain	how	to	coarsen	the	base	case	of	P-MERGE.

27.3-2

Instead	of	finding	a	median	element	in	the	larger	subarray,	as	P-MERGE	does,	consider
a	variant	that	finds	a	median	element	of	all	the	elements	in	the	two	sorted	subarrays
using	the	result	of	Exercise	9.3-8.	Give	pseudocode	for	an	efficient	multithreaded
merging	procedure	that	uses	this	median-finding	procedure.	Analyze	your	algorithm.

27.3-3

Give	an	efficient	multithreaded	algorithm	for	partitioning	an	array	around	a	pivot,	as	is
done	by	the	PARTITION	procedure	on	page	171.	You	need	not	partition	the	array	in
place.	Make	your	algorithm	as	parallel	as	possible.	Analyze	your	algorithm.	(Hint:	You
may	need	an	auxiliary	array	and	may	need	to	make	more	than	one	pass	over	the	input
elements.)

Parallel	for	then	merge.

27.3-4

Give	a	multithreaded	version	of	RECURSIVE-FFT	on	page	911.	Make	your
implementation	as	parallel	as	possible.	Analyze	your	algorithm.

27.3-5	

Give	a	multithreaded	version	of	RANDOMIZED-SELECT	on	page	216.	Make	your
implementation	as	parallel	as	possible.	Analyze	your	algorithm.	(Hint:	Use	the
partitioning	algorithm	from	Exercise	27.3-3.)

27.3-6	

Show	how	to	multithread	SELECT	from	Section	9.3.	Make	your	implementation	as
parallel	as	possible.	Analyze	your	algorithm.

27.3	Multithreaded	merge	sort
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Problems

27-1	Implementing	parallel	loops	using	nested	parallelism

Consider	the	following	multithreaded	algorithm	for	performing	pairwise	addition	on	n-

element	arrays	 	and	 	,	storing	the	sums	in	 	:

SUM-ARRAYS(A,	B,	C)

1		parallel	for	i	=	1	to	A.length

2						C[i]	=	A[i]	+	B[i]

a.	Rewrite	the	parallel	loop	in	SUM-ARRAYS	using	nested	parallelism	(spawn	and
sync)	in	the	manner	of	MAT-VEC-MAIN-LOOP.	Analyze	the	parallelism	of	your
implementation.

MAT-VEC-MAIN-LOOP(A,	B,	C,	l,	r)

1		if	l	==	r

2						C[l]	=	A[l]	+	B[l]

3		mid	=	(l	+	r)	/	2

4		spwan	MAT-VEC-MAIN-LOOP(A,	B,	C,	l,	mid)

5		MAT-VEC-MAIN-LOOP(A,	B,	C,	mid	+	1,	r)

6		sync

SUM-ARRAYS(A,	B,	C)

1		len	=	A.length

2		MAT-VEC-MAIN-LOOP(A,	B,	C,	1,	len)

Consider	the	following	alternative	implementation	of	the	parallel	loop,	which	contains	a
value	grain-size	to	be	specified:

b.	Suppose	that	we	set	 	.	What	is	the	parallelism	of	this
implementation?

	,	 	,	 	.

c.	Give	a	formula	for	the	span	of	SUM-ARRAYS'	in	terms	of	 	and	 	.
Derive	the	best	value	for	grain-size	to	maximize	parallelism.

27-2	Saving	temporary	space	in	matrix	multiplication
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The	P-MATRIX-MULTIPLY-RECURSIVE	procedure	has	the	disadvantage	that	it	must
allocate	a	temporary	matrix	 	of	size	 	,	which	can	adversely	affect	the	constants
hidden	by	the	 	-notation.	The	P-MATRIX-MULTIPLY-RECURSIVE	procedure	does
have	high	parallelism,	however.	For	example,	ignoring	the	constants	in	the	 	-notation,
the	parallelism	for	multiplying	 	matrices	comes	to	approximately

	,	since	 	.	Most	parallel	computers	have	far	fewer
than	10	million	processors.

a.	Describe	a	recursive	multithreaded	algorithm	that	eliminates	the	need	for	the

temporary	matrix	 	at	the	cost	of	increasing	the	span	to	 	.

Initialize	 	in	parallel	in	 	,	add	sync	after	the	4th	spawn,

	,	

b.	Give	and	solve	recurrences	for	the	work	and	span	of	your	implementation.

Work:	 	.

Span:	 	.

c.	Analyze	the	parallelism	of	your	implementation.	Ignoring	the	constants	in	the	 	-
notation,	estimate	the	parallelism	on	 	matrices.	Compare	with	the
parallelism	of	P-MATRIX-MULTIPLY-RECURSIVE.

Parallelism:	 	.

Most	parallel	computers	still	have	far	fewer	than	1	million	processors.

27-3	Multithreaded	matrix	algorithms

a.	Parallelize	the	LU-DECOMPOSITION	procedure	on	page	821	by	giving	pseudocode
for	a	multithreaded	version	of	this	algorithm.	Make	your	implementation	as	parallel	as
possible,	and	analyze	its	work,	span,	and	parallelism.

b.	Do	the	same	for	LUP-DECOMPOSITION	on	page	824.

c.	Do	the	same	for	LUP-SOLVE	on	page	817.

d.	Do	the	same	for	a	multithreaded	algorithm	based	on	equation	(28.13)	for	inverting	a
symmetric	positive-definite	matrix.

27-4	Multithreading	reductions	and	prefix	computations

Problems
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A	 	-reduction	of	an	array	 	,	where	 	is	an	associative	operator,	is	the
value

The	following	procedure	computes	the	 	-reduction	of	a	subarray	 	serially.

REDUCE(x,	i,	j)

1		y	=	x[i]

2		for	k	=	i	+	1	to	j

3							y	=	y	\otimes	x[k]

4		return	y

a.	Use	nested	parallelism	to	implement	a	multithreaded	algorithm	P-REDUCE,	which

performs	the	same	function	with	 	work	and	 	span.	Analyze	your
algorithm.

REDUCE(x,	i,	j)

1		if	i	==	j

2						return	x[i]

3		else	if	i	+	1	==	j

4						return	x[i]	\otimes	x[j]

5		mid	=	(i	+	j)	/	2

6		spawn	y1	=	REDUCE(x,	i,	mid)

7		y2	=	REDUCE(x,	mid	+	1,	j)

8		sync

9		return	y1	\otimes	y2

A	related	problem	is	that	of	computing	a	 	-prefix	computation,	sometimes	called	a	

-scan,	on	an	array	 	,	where	 	is	once	again	an	associative	operator.	The	

-scan	produces	the	array	 	.

Unfortunately,	multithreading	SCAN	is	not	straightforward.	For	example,	changing	the
for	loop	to	a	parallel	for	loop	would	create	races,	since	each	iteration	of	the	loop	body
depends	on	the	previous	iteration.	The	following	procedure	P-SCAN-1	performs	the	 	-
prefix	computation	in	parallel,	albeit	inefficiently.

b.	Analyze	the	work,	span,	and	parallelism	of	P-SCAN-1.

Work:	 	.

Span:	 	.

Parallelism:	 	.
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By	using	nested	parallelism,	we	can	obtain	a	more	efficient	 	-prefix	computation

c.	Argue	that	P-SCAN-2	is	correct,	and	analyze	its	work,	span,	and	parallelism.

Work:	 	.

Span:	 	.

Parallelism:	 	.

d.	Fill	in	the	three	missing	expressions	in	line	8	of	P-SCAN-UP	and	lines	5	and	6	of	P-
SCAN-DOWN.	Argue	that	with	expressions	you	supplied,	P-SCAN-3	is	correct.

8:	t[k]	*	right
5:	v
6:	t[k]

e.	Analyze	the	work,	span,	and	parallelism	of	P-SCAN-3.

Work:	 	.

Span:	 	.

Parallelism:	 	.

27-5	Multithreading	a	simple	stencil	calculation

Computational	science	is	replete	with	algorithms	that	require	the	entries	of	an	array	to
be	filled	in	with	values	that	depend	on	the	values	of	certain	already	computed
neighboring	entries,	along	with	other	information	that	does	not	change	over	the	course
of	the	computation.	The	pattern	of	neighboring	entries	does	not	change	during	the
computation	and	is	called	a	stencil.

a.	a.	Give	multithreaded	pseudocode	that	performs	this	simple	stencil	calculation	using
a	divide-and-conquer	algorithm	SIMPLE-STENCIL	based	on	the	decomposition	(27.11)
and	the	discussion	above.	(Don't	worry	about	the	details	of	the	base	case,	which
depends	on	the	specific	stencil.)	Give	and	solve	recurrences	for	the	work	and	span	of
this	algorithm	in	terms	of	 	.	What	is	the	parallelism?

SIMPLE-STENCIL(A)

1		SIMPLE-STENCIL(A11)

2		spawn	SIMPLE-STENCIL(A12)

3		SIMPLE-STENCIL(A21)

3		sync

5		SIMPLE-STENCIL(A22)
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Work:	 	.

Span:	 	.

Parallelism:	 	.

b.	Modify	your	solution	to	part	(a)	to	divide	an	 	array	into	nine	
subarrays,	again	recursing	with	as	much	parallelism	as	possible.	Analyze	this
algorithm.	How	much	more	or	less	parallelism	does	this	algorithm	have	compared	with
the	algorithm	from	part	(a)?

11

spawn	12	21	sync

spawn	13	22	31	sync

spawn	23	32	sync

33

Work:	 	.

Span:	 	.

Parallelism:	 	.

c.	Generalize	your	solutions	to	parts	(a)	and	(b)	as	follows.	Choose	an	integer	 	.

Divide	an	 	array	into	 	subarrays,	each	of	size	 	,	recursing	with	as
much	parallelism	as	possible.	In	terms	of	 	and	 	,	what	are	the	work,	span,	and
parallelism	of	your	algorithm?	Argue	that,	using	this	approach,	the	parallelism	must	be

	for	any	choice	of	 	.	(Hint:	For	this	last	argument,	show	that	the	exponent	of

	in	the	parallelism	is	strictly	less	than	1	for	any	choice	of	 	.)

Work:	 	.

Span:	 	.

Parallelism:	 	.

	,	 	,	since	 	,	the	parallelism	must	be	 	.

d.	Give	pseudocode	for	a	multithreaded	algorithm	for	this	simple	stencil	calculation	that

achieves	 	parallelism.	Argue	using	notions	of	work	and	span	that	the

problem,	in	fact,	has	 	inherent	parallelism.	As	it	turns	out,	the	divide-and-conquer
nature	of	our	multithreaded	pseudocode	does	not	let	us	achieve	this	maximal
parallelism.
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27-6	Randomized	multithreaded	algorithms

Just	as	with	ordinary	serial	algorithms,	we	sometimes	want	to	implement	randomized
multithreaded	algorithms.	This	problem	explores	how	to	adapt	the	various	performance
measures	in	order	to	handle	the	expected	behavior	of	such	algorithms.	It	also	asks	you
to	design	and	analyze	a	multithreaded	algorithm	for	randomized	quicksort.

a.	Explain	how	to	modify	the	work	law	(27.2),	span	law	(27.3),	and	greedy	scheduler

bound	(27.4)	to	work	with	expectations	when	 	,	 	,	and	 	are	all	random
variables.

b.	Consider	a	randomized	multithreaded	algorithm	for	which	1%	of	the	time	we	have

	and	 	,	but	for	99%	of	the	time	we	have	
.	Argue	that	the	speedup	of	a	randomized	multithreaded	algorithm	should	be	defined

as	 	,	rather	than	 	.

	,	 	.

	.

c.	Argue	that	the	parallelism	of	a	randomized	multithreaded	algorithm	should	be

defined	as	the	ratio	 	.

Same	as	the	above.

d.	Multithread	the	RANDOMIZED-QUICKSORT	algorithm	on	page	179	by	using	nested
parallelism.	(Do	not	parallelize	RANDOMIZED-PARTITION.)	Give	the	pseudocode	for
your	P-RANDOMIZED-QUICKSORT	algorithm.

RANDOMIZED-QUICKSORT(A,	p,	r)

1		if	p	<	r

2							q	=	RANDOM-PARTITION(A,	p,	r)

3		spawn	RANDOMIZED-QUICKSORT(A,	p,	q	-	1)

4		RANDOMIZED-QUICKSORT(A,	q	+	1,	r)

5		sync

e.	Analyze	your	multithreaded	algorithm	for	randomized	quicksort.	(Hint:	Review	the
analysis	of	RANDOMIZED-SELECT	on	page	216.)
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28	Matrix	Operations
28.1	Solving	systems	of	linear	equations
28.2	Inverting	matrices
28.3	Symmetric	positive-definite	matrices	and	least-squares	approximation
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28.3	Symmetric	positive-definite	matrices	and
least-squares	approximation
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29	Linear	Programming
29.1	Standard	and	slack	forms
29.2	Formulating	problems	as	linear	programs
29.3	The	simplex	algorithm
29.4	Duality
29.5	The	initial	basic	feasible	solution
Problems

29	Linear	Programming

538



29.1	Standard	and	slack	forms

29.1	Standard	and	slack	forms

539



29.2	Formulating	problems	as	linear	programs

29.2	Formulating	problems	as	linear	programs

540
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29.5	The	initial	basic	feasible	solution
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30	Polynomials	and	the	FFT
30.1	Representing	polynomials
30.2	The	DFT	and	FFT
30.3	Efficient	FFT	implementations
Problems
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31	Number-Theoretic	Algorithms
31.1	Elementary	number-theoretic	notions
31.2	Greatest	common	divisor
31.3	Modular	arithmetic
31.4	Solving	modular	linear	equations
31.5	The	Chinese	remainder	theorem
31.6	Powers	of	an	element
31.7	The	RSA	public-key	cryptosystem
31.8	Primality	testing
31.9	Integer	factorization
Problems
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31.1	Elementary	number-theoretic	notions

31.1-1

Prove	that	if	 	and	 	,	then	 	.

31.1-2

Prove	that	there	are	infinitely	many	primes.

31.1-3

Prove	that	if	 	and	 	,	then	 	.

If	 	,	then	 	.

If	 	,	then	 	,	then	 	.

31.1-4

Prove	that	if	 	is	prime	and	 	,	then	 	.

If	 	,	then	 	.
If	 	,	then	the	divisor	is	 	.

31.1-5

31.1	Elementary	number-theoretic	notions
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Prove	Corollary	31.5.

For	all	positive	integers	 	,	 	,	and	 	,	if	 	and	 	,	then	 	.

If	 	,	then	 	,	then	 	;	since	 	,	then	 	could	not

be	an	integer;	since	 	is	an	integer,	then	 	must	be	an	integer,

	,	then	 	.

31.1-6

Prove	that	if	 	is	prime	and	 	,	then	 	.	Conclude	that	for	all	integers	
and	 	and	all	primes	 	,

	.

31.1-7

Prove	that	if	 	and	 	are	any	positive	integers	such	that	 	,	then

for	any	 	.	Prove,	under	the	same	assumptions,	that

	implies	

for	any	integers	 	and	 	.

Suppose	 	,	then	 	,	and

	.

31.1-8

31.1	Elementary	number-theoretic	notions
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For	any	integer	 	,	an	integer	 	is	a	 	th	power	if	there	exists	an	integer	 	such

that	 	.	Furthermore,	 	is	a	nontrivial	power	if	it	is	a	 	th	power	for	some

integer	 	.	Show	how	to	determine	whether	a	given	 	-bit	integer	 	is	a	nontrivial

power	in	time	polynomial	in	 	.

Iterate	 	from	 	to	 	,	and	do	binary	searching.

31.1-9

Prove	equations	(31.6)-(31.10).

31.1-10

Show	that	the	gcd	operator	is	associative.	That	is,	prove	that	for	all	integers	 	,	 	,	and
	,

	.

31.1-11	

Prove	Theorem	31.8.

31.1-12

Give	efficient	algorithms	for	the	operations	of	dividing	a	 	-bit	integer	by	a	shorter

integer	and	of	taking	the	remainder	of	a	 	-bit	integer	when	divided	by	a	shorter	integer.

Your	algorithms	should	run	in	time	 	.

Shift	left	until	the	two	numbers	have	the	same	length,	then	repeatedly	subtract	with	proper
multiplier	and	shift	right.

31.1-13

Give	an	efficient	algorithm	to	convert	a	given	 	-bit	(binary)	integer	to	a	decimal
representation.	Argue	that	if	multiplication	or	division	of	integers	whose	length	is	at

most	 	takes	time	 	,	then	we	can	convert	binary	to	decimal	in	time

	.

31.1	Elementary	number-theoretic	notions
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def	bin2dec(s):

				n	=	len(s)

				if	n	==	1:

								return	ord(s)	-	ord('0')

				m	=	n	//	2

				h	=	bin2dec(s[:m])

				l	=	bin2dec(s[m:])

				return	(h	<<	(n	-	m))	+	l

31.1	Elementary	number-theoretic	notions
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31.2	Greatest	common	divisor

31.2-1

Prove	that	equations	(31.11)	and	(31.12)	imply	equation	(31.13).

31.2-2

Compute	the	values	 	that	the	call	EXTENDED-EUCLID	 	returns.

	.

31.2-3

Prove	that	for	all	integers	 	,	 	,	and	 	,

	.

Let	 	,	then	 	and	 	.	Since

	and	 	,	then

	,	 	.

Let	 	,	then	 	and	 	.	Since

	,	then	 	.

Since	 	and	 	,	then	 	,	 	.

Since	 	and	 	,	then

	.

31.2-4

Rewrite	EUCLID	in	an	iterative	form	that	uses	only	a	constant	amount	of	memory	(that
is,	stores	only	a	constant	number	of	integer	values).

31.2	Greatest	common	divisor
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def	euclid(a,	b):

				while	b	!=	0:

								a,	b	=	b,	a	%	b

				return	a

31.2-5

If	 	,	show	that	the	call	EUCLID	 	makes	at	most	 	recursive

calls.	Improve	this	bound	to	 	.

	.

Since	 	,	 	has	the	same	number	of

recursive	calls	with	 	,	therefore	we	could	let	 	,	the	inequality

	.	will	holds.

31.2-6

What	does	EXTENDED-EUCLID	 	return?	Prove	your	answer	correct.

If	 	is	odd,	then	 	.

If	 	is	even,	then	 	.

31.2-7

Define	the	 	function	for	more	than	two	arguments	by	the	recursive	equation

	.	Show	that	the	
function	returns	the	same	answer	independent	of	the	order	in	which	its	arguments	are
specified.	Also	show	how	to	find	integers	 	such	that

	.	Show	that	the	number	of

divisions	performed	by	your	algorithm	is	 	.

31.2	Greatest	common	divisor

556



Suppose	 	and

	,	then	the

coefficient	of	 	is	 	.

def	extended_euclid(a,	b):

				if	b	==	0:

								return	(a,	1,	0)

				d,	x,	y	=	extended_euclid(b,	a	%	b)

				return	(d,	y,	x	-	(a	//	b)	*	y)

def	extended_eculid_multi(a):

				if	len(a)	==	1:

								return	(a[0],	[1])

				g	=	a[-1]

				xs	=	[1]	*	len(a)

				ys	=	[0]	*	len(a)

				for	i	in	xrange(len(a)	-	2,	-1,	-1):

								g,	xs[i],	ys[i	+	1]	=	extended_euclid(a[i],	g)

				m	=	1

				for	i	in	xrange(1,	len(a)):

								m	*=	ys[i]

								xs[i]	*=	m

				return	(g,	xs)

31.2-8

Define	 	to	be	the	least	common	multiple	of	the	 	integers
	,	that	is,	the	smallest	nonnegative	integer	that	is	a	multiple	of	each	

.	Show	how	to	compute	 	efficiently	using	the	(two-argument)

	operation	as	a	subroutine.

31.2	Greatest	common	divisor
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def	gcd(a,	b):

				if	b	==	0:

								return	a

				return	gcd(b,	a	%	b)

def	lcm(a,	b):

				return	a	/	gcd(a,	b)	*	b

def	lcm_multi(lst):

				l	=	lst[0]

				for	i	in	xrange(1,	len(lst)):

								l	=	lcm(l,	lst[i])

				return	l

31.2-9

Prove	that	 	,	 	,	 	,	and	 	are	pairwise	relatively	prime	if	and	only	if

More	generally,	show	that	 	are	pairwise	relatively	prime	if	and	only	if	a

set	of	 	pairs	of	numbers	derived	from	the	 	are	relatively	prime.

Suppose	 	,	then	 	,	thus	 	and	 	are
relatively	prime,	 	and	 	,	 	and	 	,	 	and	 	are	the	all	relatively	prime.	And	since

	,	all	the	pairs	are	relatively	prime.

General:	in	the	first	round,	divide	the	elements	into	two	sets	with	equal	number	of	elements,
calculate	the	products	of	the	two	set	separately,	if	the	two	products	are	relatively	prime,	then
the	element	in	one	set	is	pairwise	relatively	prime	with	the	element	in	the	other	set.	In	the
next	iterations,	for	each	set,	we	divide	the	elements	into	two	subsets,	suppose	we	have

subsets	 	,	then	we	calculate	the	products	of	 	and

	,	if	the	two	products	are	relatively	prime,	then	all	the	pairs	of	subset	are
pairwise	relatively	prime	similar	to	the	first	round.	In	each	iteration,	the	number	of	elements

in	a	subset	is	half	of	the	original	set,	thus	there	are	 	pairs	of	products.

To	choose	the	subsets	efficiently,	in	the	 	th	iteration,	we	could	divide	the	numbers	based	on
the	value	of	the	index's	 	th	bit.

31.2	Greatest	common	divisor
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31.3	Modular	arithmetic

31.3-1

Draw	the	group	operation	tables	for	the	groups	 	and	 	.	Show	that
these	groups	are	isomorphic	by	exhibiting	a	one-to-one	correspondence	 	between

their	elements	such	that	 	if	and	only	if

	.

	:	 	.

	:	 	.

	.

31.3-2

List	all	subgroups	of	 	and	of	 	.

	,

	,

	.

	,

	.

31.3-3

Prove	Theorem	31.14.

A	nonempty	closed	subset	of	a	finite	group	is	a	subgroup.

Closure:	the	subset	is	closed.

Identity:	suppose	 	,	then	 	.	Since	the	subset	is	finite,	there	must	be	a

period	such	that	 	,	hence	 	,	therefore	the
subset	must	contain	the	identity.

31.3	Modular	arithmetic
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Associativity:	inherit	from	the	origin	group.

Inverses:	suppose	 	,	the	inverse	of	element	 	is	 	since

	.

31.3-4

Show	that	if	 	is	prime	and	 	is	a	positive	integer,	then

	.

	.

31.3-5

Show	that	for	any	integer	 	and	for	any	 	,	the	function	

defined	by	 	is	a	permutation	of	 	.

To	prove	it	is	a	permutation,	we	need	to	prove	that

for	each	element	 	,	 	,

the	numbers	generated	by	 	are	distinct.

Since	 	and	 	,	then	 	by	the	closure	property.

Suppose	there	are	two	distinct	numbers	 	and	 	that	 	,

which	contradicts	the	assumption,	therefore	the	numbers	generated	by	 	are	distinct.

31.3	Modular	arithmetic
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31.4	Solving	modular	linear	equations

31.4-1

Find	all	solutions	to	the	equation	 	.

	.

31.4-2

Prove	that	the	equation	 	implies	 	whenever

	.	Show	that	the	condition	 	is	necessary	by	supplying

a	counterexample	with	 	.

Since	 	,	then	 	.

	,

	.

31.4-3

Consider	the	following	change	to	line	3	of	the	procedure	MODULAR-LINEAR-
EQUATION-SOLVER:

3	x0	=	x'(b/d)	mod	(n/d)

Assume	that	 	,	then	the	largest	solution	is

	,	which	is	impossible,	therefore	 	.

31.4-4	

31.4	Solving	modular	linear	equations
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Let	 	be	prime	and	 	be	a	polynomial	of

degree	 	,	with	coefficients	 	drawn	from	 	.	We	say	that	 	is	a	zero	of	 	if

	.	Prove	that	if	 	is	a	zero	of	 	,	then

	for	some	polynomial	 	of	degree	 	.	Prove

by	induction	on	 	that	if	 	is	prime,	then	a	polynomial	 	of	degree	 	can	have	at
most	 	distinct	zeros	modulo	 	.

31.4	Solving	modular	linear	equations
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31.5	The	Chinese	remainder	theorem

31.5-1

Find	all	solutions	to	the	equations	 	and	 	.

	,	 	.

	,	 	.

	,	 	.

	.

31.5-2

Find	all	integers	 	that	leave	remainders	 	when	divided	by	 	respectively.

	,	 	.

31.5-3

Argue	that,	under	the	definitions	of	Theorem	31.27,	if	 	,	then

	.

	.

31.5-4

Under	the	definitions	of	Theorem	31.27,	prove	that	for	any	polynomial	 	,	the	number	of

roots	of	the	equation	 	equals	the	product	of	the	number	of	roots
of	each	of	the	equations

	.

Based	on	31.28	~	31.30.

31.5	The	Chinese	remainder	theorem
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31.6	Powers	of	an	element

31.6-1

Draw	a	table	showing	the	order	of	every	element	in	 	.	Pick	the	smallest	primitive

root	 	and	compute	a	table	giving	 	for	all	 	.

	,	 	.

31.6-2

Give	a	modular	exponentiation	algorithm	that	examines	the	bits	of	 	from	right	to	left
instead	of	left	to	right.

def	modular_exponentiation(a,	b,	n):

				i,	d	=	0,	1

				while	(1	<<	i)	<=	b:

								if	(b	&	(1	<<	i))	>	0:

												d	=	(d	*	a)	%	n

								a	=	(a	*	a)	%	n

								i	+=	1

				return	d

31.6-3

Assuming	that	you	know	 	,	explain	how	to	compute	 	for	any	
using	the	procedure	MODULAR-EXPONENTIATION.

31.6	Powers	of	an	element
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31.7	The	RSA	public-key	cryptosystem

31.7-1

Consider	an	RSA	key	set	with	 	,	 	,	 	,	and	 	.	What	value
of	 	should	be	used	in	the	secret	key?	What	is	the	encryption	of	the	message

	?

	.

	.

	.

	.

31.7-2

Prove	that	if	Alice's	public	exponent	 	is	 	and	an	adversary	obtains	Alice's	secret

exponent	 	,	where	 	,	then	the	adversary	can	factor	Alice's	modulus	
in	time	polynomial	in	the	number	of	bits	in	 	.	(Although	you	are	not	asked	to	prove	it,
you	may	be	interested	to	know	that	this	result	remains	true	even	if	the	condition	
is	removed.	See	Miller	[255].)

If	 	,	then	
.

	,	then	 	,	then	we	can	solve

	.

31.7-3	

31.7	The	RSA	public-key	cryptosystem
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Prove	that	RSA	is	multiplicative	in	the	sense	that

	.

Use	this	fact	to	prove	that	if	an	adversary	had	a	procedure	that	could	efficiently	decrypt

	percent	of	messages	from	 	encrypted	with	 	,	then	he	could	employ	a

probabilistic	algorithm	to	decrypt	every	message	encrypted	with	 	with	high
probability.

Multiplicative:	 	is	relatively	prime	to	 	.

Decrypt:	In	each	iteration	randomly	choose	a	prime	number	 	that	 	is	relatively	prime	to

	,	if	we	can	decrypt	 	,	then	we	can	return	 	since	 	.

31.7	The	RSA	public-key	cryptosystem
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31.8	Primality	testing

31.8-1

Prove	that	if	an	odd	integer	 	is	not	a	prime	or	a	prime	power,	then	there	exists	a
nontrivial	square	root	of	 	modulo	 	.

31.8-2	

31.8-3

Prove	that	if	 	is	a	nontrivial	square	root	of	 	,	modulo	 	,	then	 	and

	are	both	nontrivial	divisors	of	 	.

	,	suppose	 	,	then	 	,	then

	which	is	trivial,	it	contradicts	the	fact	that	 	is	nontrivial,	therefore

	,	 	.

31.8	Primality	testing
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31.9	Integer	factorization

31.9-1

Referring	to	the	execution	history	shown	in	Figure	31.7(a),	when	does	POLLARDRHO
print	the	factor	73	of	1387?

	.

31.9-2

Suppose	that	we	are	given	a	function	 	and	an	initial	value	 	.

Define	 	for	 	.	Let	 	and	 	be	the	smallest	values

such	that	 	for	 	.	In	the	terminology	of	Pollard's	rho
algorithm,	 	is	the	length	of	the	tail	and	 	is	the	length	of	the	cycle	of	the	rho.	Give	an
efficient	algorithm	to	determine	 	and	 	exactly,	and	analyze	its	running	time.

31.9-3

How	many	steps	would	you	expect	POLLARD-RHO	to	require	to	discover	a	factor	of

the	form	 	,	where	 	is	prime	and	 	?

	.

31.9-4	

One	disadvantage	of	POLLARD-RHO	as	written	is	that	it	requires	one	gcd	computation
for	each	step	of	the	recurrence.	Instead,	we	could	batch	the	gcd	computations	by
accumulating	the	product	of	several	 	values	in	a	row	and	then	using	this	product
instead	of	 	in	the	gcd	computation.	Describe	carefully	how	you	would	implement	this
idea,	why	it	works,	and	what	batch	size	you	would	pick	as	the	most	effective	when

working	on	a	 	-bit	number	 	.

31.9	Integer	factorization

570



Problems

31-1	Binary	gcd	algorithm

Most	computers	can	perform	the	operations	of	subtraction,	testing	the	parity	(odd	or
even)	of	a	binary	integer,	and	halving	more	quickly	than	computing	remainders.	This
problem	investigates	the	binary	gcd	algorithm,	which	avoids	the	remainder
computations	used	in	Euclid's	algorithm.

a.	Prove	that	if	 	and	 	are	both	even,	then	 	.

b.	Prove	that	if	 	is	odd	and	 	is	even,	then	 	.

c.	Prove	that	if	 	and	 	are	both	odd,	then	 	.

d.	Design	an	efficient	binary	gcd	algorithm	for	input	integers	 	and	 	,	where	 	,

that	runs	in	 	time.	Assume	that	each	subtraction,	parity	test,	and	halving	takes
unit	time.

def	binary_gcd(a,	b):

				if	a	<	b:

								return	binary_gcd(b,	a)

				if	b	==	0:

								return	a

				if	(a	&	1	==	1)	and	(b	&	1	==	1):

								return	binary_gcd((a	-	b)	>>	1,	b)

				if	(a	&	1	==	0)	and	(b	&	1	==	0):

								return	binary_gcd(a	>>	1,	b	>>	1)	<<	1

				if	a	&	1	==	1:

								return	binary_gcd(a,	b	>>	1)

				return	binary_gcd(a	>>	1,	b)

31-2	Analysis	of	bit	operations	in	Euclid's	algorithm

a.	Consider	the	ordinary	"paper	and	pencil"	algorithm	for	long	division:	dividing	 	by	 	,
which	yields	a	quotient	 	and	remainder	 	.	Show	that	this	method	requires

	bit	operations.

Number	of	comparisons	and	subtractions:	 	.

Length	of	subtraction:	 	.
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Total:	 	.

b.	Define	 	.	Show	that	the	number	of	bit	operations

performed	by	EUCLID	in	reducing	the	problem	of	computing	 	to	that	of

computing	 	is	at	most	 	for	some
sufficiently	large	constant	 	.

c.	Show	that	EUCLID	 	requires	 	bit	operations	in	general	and

	bit	operations	when	applied	to	two	 	-bit	inputs.

31-3	Three	algorithms	for	Fibonacci	numbers

This	problem	compares	the	efficiency	of	three	methods	for	computing	the	 	th

Fibonacci	number	 	,	given	 	.	Assume	that	the	cost	of	adding,	subtracting,	or

multiplying	two	numbers	is	 	,	independent	of	the	size	of	the	numbers.

a.	Show	that	the	running	time	of	the	straightforward	recursive	method	for	computing	
based	on	recurrence	(3.22)	is	exponential	in	 	.	(See,	for	example,	the	FIB	procedure
on	page	775.)

b.	Show	how	to	compute	 	in	 	time	using	memoization.
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def	fib(n):

				fibs	=	[0,	1]	+	[-1]	*	(n	-	1)

				def	fib_sub(n):

								if	fibs[n]	==	-1:

												fibs[n]	=	fib_sub(n	-	1)	+	fib_sub(n	-	2)

								return	fibs[n]

				return	fib_sub(n)

c.	Show	how	to	compute	 	in	 	time	using	only	integer	addition	and
multiplication.	(Hint:	Consider	the	matrix

and	its	powers.)

class	Matrix:

				def	__init__(self,	data):

								self.data	=	data

				def	__mul__(self,	x):

								a	=	self.data

								b	=	x.data

								c	=	[[0,	0],	[0,	0]]

								for	i	in	xrange(2):

												for	j	in	xrange(2):

																for	k	in	xrange(2):

																				c[i][j]	+=	a[i][k]	*	b[k][j]

								return	Matrix(c)

def	fib(n):

				if	n	==	0:

								return	0

				if	n	==	1:

								return	1

				m	=	Matrix([[1,	1],	[1,	0]])

				r	=	Matrix([[1,	0],	[0,	1]])

				i	=	0

				n	-=	1

				while	(1	<<	i)	<=	n:

								if	(n	&	(1	<<	i))	>	0:

												r	*=	m

								m	*=	m

								i	+=	1

				return	r.data[0][0]
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d.	Assume	now	that	adding	two	 	-bit	numbers	takes	 	time	and	that	multiplying

two	 	-bit	numbers	takes	 	time.	What	is	the	running	time	of	these	three	methods
under	this	more	reasonable	cost	measure	for	the	elementary	arithmetic	operations?

1.	 	.

2.	 	.

3.	 	.

31-4	Quadratic	residues

Let	 	be	an	odd	prime.	A	number	 	is	a	quadratic	residue	if	the	equation

	has	a	solution	for	the	unknown	 	.

a.	Show	that	there	are	exactly	 	quadratic	residues,	modulo	 	.

b.	If	 	is	prime,	we	define	the	Legendre	symbol	 	,	for	 	,	to	be	 	if	 	is	a

quadratic	residue	modulo	 	and	 	otherwise.	Prove	that	if	 	,	then

	.

Give	an	efficient	algorithm	that	determines	whether	a	given	number	 	is	a	quadratic
residue	modulo	 	.	Analyze	the	efficiency	of	your	algorithm.

c.	Prove	that	if	 	is	a	prime	of	the	form	 	and	 	is	a	quadratic	residue	in	 	,

then	 	is	a	square	root	of	 	,	modulo	 	.	How	much	time	is	required	to	find
the	square	root	of	a	quadratic	residue	 	modulo	 	?

d.	Describe	an	efficient	randomized	algorithm	for	finding	a	nonquadratic	residue,

modulo	an	arbitrary	prime	 	,	that	is,	a	member	of	 	that	is	not	a	quadratic	residue.
How	many	arithmetic	operations	does	your	algorithm	require	on	average?
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32	String	Matching
32.1	The	naive	string-matching	algorithm
32.2	The	Rabin-Karp	algorithm
32.3	String	matching	with	finite	automata
32.4	The	Knuth-Morris-Pratt	algorithm
Problems
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32.1	The	naive	string-matching	algorithm

32.1-1

Show	the	comparisons	the	naive	string	matcher	makes	for	the	pattern	 	in
the	text	 	.

32.1-2

Suppose	that	all	characters	in	the	pattern	 	are	different.	Show	how	to	accelerate

NAIVE-STRING-MATCHER	to	run	in	time	 	on	an	 	-character	text	 	.

Suppose	 	,	then	for	 	,	 	,	the

	are	all	invalid	shifts	which	could	be	skipped,	therefore	we	can	compare	 	with

	in	the	next	iteration.

32.1-3

Suppose	that	pattern	 	and	text	 	are	randomly	chosen	strings	of	length	 	and	 	,

respectively,	from	the	 	-ary	alphabet	 	,	where	 	.
Show	that	the	expected	number	of	character-to-character	comparisons	made	by	the
implicit	loop	in	line	4	of	the	naive	algorithm	is

over	all	executions	of	this	loop.	(Assume	that	the	naive	algorithm	stops	comparing
characters	for	a	given	shift	once	it	finds	a	mismatch	or	matches	the	entire	pattern.)
Thus,	for	randomly	chosen	strings,	the	naive	algorithm	is	quite	efficient.

Suppose	for	each	shift,	the	number	of	compared	characters	is	 	,	then:

32.1	The	naive	string-matching	algorithm
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There	are	 	shifts,	therefore	the	expected	number	of	comparisons	is:

And	since	 	,	 	,	and	since	 	,	 	,

therefore	 	.

32.1-4

32.1	The	naive	string-matching	algorithm
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Suppose	we	allow	the	pattern	 	to	contain	occurrences	of	a	gap	character	 	that	can
match	an	arbitrary	string	of	characters	(even	one	of	zero	length).	For	example,	the
pattern	 	occurs	in	the	text	 	as

and	as

Note	that	the	gap	character	may	occur	an	arbitrary	number	of	times	in	the	pattern	but
not	at	all	in	the	text.	Give	a	polynomial-time	algorithm	to	determine	whether	such	a
pattern	 	occurs	in	a	given	text	 	,	and	analyze	the	running	time	of	your	algorithm.

Dynamic	programming,	 	.

32.1	The	naive	string-matching	algorithm
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32.2	The	Rabin-Karp	algorithm

32.2-1

Working	modulo	 	,	how	many	spurious	hits	does	the	Rabin-Karp	matcher
encounter	in	the	text	 	when	looking	for	the	pattern

	?

	.

32.2-2

How	would	you	extend	the	Rabin-Karp	method	to	the	problem	of	searching	a	text	string
for	an	occurrence	of	any	one	of	a	given	set	of	 	patterns?	Start	by	assuming	that	all	
patterns	have	the	same	length.	Then	generalize	your	solution	to	allow	the	patterns	to
have	different	lengths.

Truncation.

32.2-3

Show	how	to	extend	the	Rabin-Karp	method	to	handle	the	problem	of	looking	for	a
given	 	pattern	in	an	 	array	of	characters.	(The	pattern	may	be	shifted
vertically	and	horizontally,	but	it	may	not	be	rotated.)

Calculate	the	hashes	in	each	column	just	like	the	Rabin-Karp	in	one-dimension,	then	treat
the	hashes	in	each	row	as	the	characters	and	hashing	again.

32.2-4

32.2	The	Rabin-Karp	algorithm
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Alice	has	a	copy	of	a	long	 	-bit	file	 	,	and	Bob	similarly

has	an	 	-bit	file	 	.	Alice	and	Bob	wish	to	know	if	their
files	are	identical.	To	avoid	transmitting	all	of	 	or	 	,	they	use	the	following	fast

probabilistic	check.	Together,	they	select	a	prime	 	and	randomly	select	an

integer	 	from	 	.	Then,	Alice	evaluates

and	Bob	similarly	evaluates	 	.	Prove	that	if	 	,	there	is	at	most	one	chance

in	 	that	 	,	whereas	if	the	two	files	are	the	same,	 	is

necessarily	the	same	as	 	.	(Hint:	See	Exercise	31.4-4.)

32.2	The	Rabin-Karp	algorithm
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32.3	String	matching	with	finite	automata

32.3-1

Construct	the	string-matching	automaton	for	the	pattern	 	and	illustrate	its
operation	on	the	text	string	 	.

	 	 	
	.

32.3-2

Draw	a	state-transition	diagram	for	a	string-matching	automaton	for	the	pattern

	over	the	alphabet	 	.

32.3	String	matching	with	finite	automata
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State a b

0 1 0

1 1 2

2 3 0

3 1 4

4 3 5

5 6 0

6 1 7

7 3 8

8 9 0

9 1 10

10 11 0

11 1 12

12 3 13

13 14 0

14 1 15

15 16 8

16 1 17

17 3 18

18 19 0

19 1 20

20 3 21

21 9 0

32.3-3

We	call	a	pattern	 	nonoverlappable	if	 	implies	 	or	 	.	Describe
the	state-transition	diagram	of	the	string-matching	automaton	for	a	nonoverlappable
pattern.

	.

32.3-4	

32.3	String	matching	with	finite	automata
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Given	two	patterns	 	and	 	,	describe	how	to	construct	a	finite	automaton	that
determines	all	occurrences	of	either	pattern.	Try	to	minimize	the	number	of	states	in
your	automaton.

Combine	the	common	prefix	and	suffix.

32.3-5

Given	a	pattern	 	containing	gap	characters	(see	Exercise	32.1-4),	show	how	to	build

a	finite	automaton	that	can	find	an	occurrence	of	 	in	a	text	 	in	 	matching	time,

where	 	.

Split	the	string	with	the	gap	characters,	build	finite	automatons	for	each	substring.	When	a
substring	is	matched,	moved	to	the	next	finite	automaton.

32.3	String	matching	with	finite	automata
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32.4	The	Knuth-Morris-Pratt	algorithm

32.4-1

Compute	the	prefix	function	 	for	the	pattern	 	.

	.

32.4-2

Give	an	upper	bound	on	the	size	of	 	as	a	function	of	 	.	Give	an	example	to	show
that	your	bound	is	tight.

	.

32.4-3

Explain	how	to	determine	the	occurrences	of	pattern	 	in	the	text	 	by	examining	the
	function	for	the	string	 	(the	string	of	length	 	that	is	the	concatenation	of	

and	 	).

	.

32.4-4

Use	an	aggregate	analysis	to	show	that	the	running	time	of	KMP-MATCHER	is	 	.

The	number	of	 	is	at	most	 	.

32.4-5

Use	a	potential	function	to	show	that	the	running	time	of	KMP-MATCHER	is	 	.

	.

32.4-6

32.4	The	Knuth-Morris-Pratt	algorithm
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Show	how	to	improve	KMP-MATCHER	by	replacing	the	occurrence	of	 	in	line	7	(but

not	line	12)	by	 	,	where	 	is	defined	recursively	for	 	by	the
equation

Explain	why	the	modified	algorithm	is	correct,	and	explain	in	what	sense	this	change
constitutes	an	improvement.

If	 	,	then	if	 	,	there	is	no	need	to

compare	 	with	 	.

32.4-7

Give	a	linear-time	algorithm	to	determine	whether	a	text	 	is	a	cyclic	rotation	of	another

string	 	.	For	example,	 	and	 	are	cyclic	rotations	of	each	other.

Find	 	in	 	.

32.4-8	

Give	an	 	-time	algorithm	for	computing	the	transition	function	 	for	the	string-
matching	automaton	corresponding	to	a	given	pattern	 	.	(Hint:	Prove	that

	if	 	or	 	.)

Compute	the	prefix	function	 	times.

32.4	The	Knuth-Morris-Pratt	algorithm
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Problems

32-1	String	matching	based	on	repetition	factors

Let	 	denote	the	concatenation	of	string	 	with	itself	 	times.	For	example,

	.	We	say	that	a	string	 	has	repetition	factor	 	if	

for	some	string	 	and	some	 	.	Let	 	denote	the	largest	 	such	that	 	has
repetition	factor	 	.

a.	Give	an	efficient	algorithm	that	takes	as	input	a	pattern	 	and	computes

the	value	 	for	 	.	What	is	the	running	time	of	your	algorithm?

Compute	 	,	let	 	,	if	 	and	for	all	 	,

	,	then	 	,	otherwise	 	.	The	running	time	is	 	.

b.	For	any	pattern	 	,	let	 	be	defined	as	 	.	Prove
that	if	the	pattern	 	is	chosen	randomly	from	the	set	of	all	binary	strings	of	length	 	,

then	the	expected	value	of	 	is	 	.

Problems
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c.	Argue	that	the	following	string-matching	algorithm	correctly	finds	all	occurrences	of

pattern	 	in	a	text	 	in	time	 	:

REPETITION-MATCHER(P,	T)

	1		m	=	P.length

	2		n	=	T.length

	3		k	=	1	+	\rho^*(P)

	4		q	=	0

	5		s	=	0

	6		while	s	<=	n	-	m

	7						if	T[s	+	q	+	1]	==	P[q	+	1]

	8										q	=	q	+	1

	9										if	q	==	m

10															print	"Pattern	occurs	with	shift"	s

11						if	q	==	m	or	T[s	+	q	+	1]	!=	P[q	+	1]

12										s	=	s	+	max(1,	ceil(q/k))

13										q	=	0

This	algorithm	is	due	to	Galil	and	Seiferas.	By	extending	these	ideas	greatly,	they

obtained	a	linear-time	string-matching	algorithm	that	uses	only	 	storage	beyond
what	is	required	for	 	and	 	.

Problems

587



33	Computational	Geometry
33.1	Line-segment	properties
33.2	Determining	whether	any	pair	of	segments	intersects
33.3	Finding	the	convex	hull
33.4	Finding	the	closest	pair	of	points
Problems
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33.1	Line-segment	properties

33.1-1

Prove	that	if	 	is	positive,	then	vector	 	is	clockwise	from	vector	 	with

respect	to	the	origin	 	and	that	if	this	cross	product	is	negative,	then	 	is
counterclockwise	from	 	.

33.1-2

Professor	van	Pelt	proposes	that	only	the	 	-dimension	needs	to	be	tested	in	line	1	of
ON-SEGMENT.	Show	why	the	professor	is	wrong.

	.

33.1-3

The	polar	angle	of	a	point	 	with	respect	to	an	origin	point	 	is	the	angle	of	the

vector	 	in	the	usual	polar	coordinate	system.	For	example,	the	polar	angle	of

	with	respect	to	 	is	the	angle	of	the	vector	 	,	which	is	 	degrees	or

	radians.	The	polar	angle	of	 	with	respect	to	 	is	the	angle	of	the	vector

	,	which	is	 	degrees	or	 	radians.	Write	pseudocode	to	sort	a	sequence

	of	 	points	according	to	their	polar	angles	with	respect	to	a	given

origin	point	 	.	Your	procedure	should	take	 	time	and	use	cross	products	to
compare	angles.

import	math

def	sort_by_polar_angle(p0,	p):

				a	=	[]

				for	i	in	xrange(len(p)):

								a.append(math.atan2(p[i][1]	-	p0[1],	p[i][0]	-	p0[0]))

				a	=	map(lambda	x:	x	%	(math.pi	*	2),	a)

				p	=	sorted(zip(a,	p))

				return	map(lambda	x:	x[1],	p)

33.1-4

33.1	Line-segment	properties
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Show	how	to	determine	in	 	time	whether	any	three	points	in	a	set	of	
points	are	colinear.

Based	on	exercise	33.1-3,	for	each	point	 	,	let	 	be	 	and	sort	other	points	according	to
their	polar	angles	mod	 	.	Then	scan	linearly	to	see	whether	two	points	have	the	same	polar

angle.	 	.

33.1-5

A	polygon	is	a	piecewise-linear,	closed	curve	in	the	plane.	That	is,	it	is	a	curve	ending
on	itself	that	is	formed	by	a	sequence	of	straight-line	segments,	called	the	sides	of	the
polygon.	A	point	joining	two	consecutive	sides	is	a	vertex	of	the	polygon.	If	the	polygon
is	simple,	as	we	shall	generally	assume,	it	does	not	cross	itself.	The	set	of	points	in	the
plane	enclosed	by	a	simple	polygon	forms	the	interior	of	the	polygon,	the	set	of	points
on	the	polygon	itself	forms	its	boundary,	and	the	set	of	points	surrounding	the	polygon
forms	its	exterior.	A	simple	polygon	is	convex	if,	given	any	two	points	on	its	boundary
or	in	its	interior,	all	points	on	the	line	segment	drawn	between	them	are	contained	in	the
polygon's	boundary	or	interior.	A	vertex	of	a	convex	polygon	cannot	be	expressed	as	a
convex	combination	of	any	two	distinct	points	on	the	boundary	or	in	the	interior	of	the
polygon.

Professor	Amundsen	proposes	the	following	method	to	determine	whether	a	sequence

	of	 	points	forms	the	consecutive	vertices	of	a	convex	polygon.

Output	"yes"	if	the	set	 	,	where	subscript
addition	is	performed	modulo	 	,	does	not	contain	both	left	turns	and	right	turns;
otherwise,	output	"no."	Show	that	although	this	method	runs	in	linear	time,	it	does	not
always	produce	the	correct	answer.	Modify	the	professor's	method	so	that	it	always
produces	the	correct	answer	in	linear	time.

A	line.

33.1-6

Given	a	point	 	,	the	right	horizontal	ray	from	 	is	the	set	of	points

	,	that	is,	it	is	the	set	of	points	due	right	of
	along	with	 	itself.	Show	how	to	determine	whether	a	given	right	horizontal	ray

from	 	intersects	a	line	segment	 	in	 	time	by	reducing	the	problem	to	that
of	determining	whether	two	line	segments	intersect.

	and	 	.

33.1	Line-segment	properties
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or

	and	

33.1-7

One	way	to	determine	whether	a	point	 	is	in	the	interior	of	a	simple,	but	not
necessarily	convex,	polygon	 	is	to	look	at	any	ray	from	 	and	check	that	the	ray
intersects	the	boundary	of	 	an	odd	number	of	times	but	that	 	itself	is	not	on	the

boundary	of	 	.	Show	how	to	compute	in	 	time	whether	a	point	 	is	in	the
interior	of	an	 	-vertex	polygon	 	.	(Hint:	Use	Exercise	33.1-6.	Make	sure	your
algorithm	is	correct	when	the	ray	intersects	the	polygon	boundary	at	a	vertex	and	when
the	ray	overlaps	a	side	of	the	polygon.)

Based	on	exercise	33.1-6,	use	 	as	 	.

33.1-8

Show	how	to	compute	the	area	of	an	 	-vertex	simple,	but	not	necessarily	convex,

polygon	in	 	time.	(See	Exercise	33.1-5	for	definitions	pertaining	to	polygons.)

Half	of	the	sum	of	the	cross	products	of	 	.

33.1	Line-segment	properties
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33.2	Determining	whether	any	pair	of	segments
intersects

33.2-1

Show	that	a	set	of	 	line	segments	may	contain	 	intersections.

Star.

33.2-2

Given	two	segments	 	and	 	that	are	comparable	at	 	,	show	how	to	determine	in

	time	which	of	 	or	 	holds.	Assume	that	neither	segment	is	vertical.

Suppose	 	and	 	,

Compare	 	and	 	.	To	avoid	division,	compare	 	and	 	.

33.2-3

Professor	Mason	suggests	that	we	modify	ANY-SEGMENTS-INTERSECT	so	that
instead	of	returning	upon	finding	an	intersection,	it	prints	the	segments	that	intersect
and	continues	on	to	the	next	iteration	of	the	for	loop.	The	professor	calls	the	resulting
procedure	PRINT-INTERSECTING-SEGMENTS	and	claims	that	it	prints	all
intersections,	from	left	to	right,	as	they	occur	in	the	set	of	line	segments.	Professor
Dixon	disagrees,	claiming	that	Professor	Mason's	idea	is	incorrect.	Which	professor	is
right?	Will	PRINT-INTERSECTING-SEGMENTS	always	find	the	leftmost	intersection
first?	Will	it	always	find	all	the	intersections?

No.

33.2	Determining	whether	any	pair	of	segments	intersects
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No.

33.2-4

Give	an	 	-time	algorithm	to	determine	whether	an	n-vertex	polygon	is
simple.

Same	as	ANY-SEGMENTS-INTERSECT.

33.2-5

Give	an	 	-time	algorithm	to	determine	whether	two	simple	polygons	with	a
total	of	 	vertices	intersect.

Same	as	ANY-SEGMENTS-INTERSECT.

33.2-6

A	disk	consists	of	a	circle	plus	its	interior	and	is	represented	by	its	center	point	and

radius.	Two	disks	intersect	if	they	have	any	point	in	common.	Give	an	 	-	time
algorithm	to	determine	whether	any	two	disks	in	a	set	of	 	intersect.

Same	as	ANY-SEGMENTS-INTERSECT.

33.2-7

Given	a	set	of	 	line	segments	containing	a	total	of	 	intersections,	show	how	to	output

all	 	intersections	in	 	time.

Treat	the	intersection	points	as	event	points.

33.2-8

Argue	that	ANY-SEGMENTS-INTERSECT	works	correctly	even	if	three	or	more
segments	intersect	at	the	same	point.

33.2-9

33.2	Determining	whether	any	pair	of	segments	intersects
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Show	that	ANY-SEGMENTS-INTERSECT	works	correctly	in	the	presence	of	vertical
segments	if	we	treat	the	bottom	endpoint	of	a	vertical	segment	as	if	it	were	a	left
endpoint	and	the	top	endpoint	as	if	it	were	a	right	endpoint.	How	does	your	answer	to
Exercise	33.2-2	change	if	we	allow	vertical	segments?

33.2	Determining	whether	any	pair	of	segments	intersects
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33.3	Finding	the	convex	hull

33.3	Finding	the	convex	hull
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